A hybrid quantum-classical classification model based on branching multi-scale entanglement renormalization ansatz

被引:1
|
作者
Hou, Yan-Yan [1 ]
Li, Jian [2 ]
Xu, Tao [3 ]
Liu, Xin-Yu [1 ]
机构
[1] Zaozhuang Univ, Coll Informat Sci & Engn, Zaozhuang 277160, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Cyberspace Secur, Beijing 100876, Peoples R China
[3] Zaozhuang Univ, Network Ctr, Zaozhuang 277160, Peoples R China
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Tensor networks; Hybrid quantum-classical classification model; Branching multi-scale entanglement renormalization ansatz (BMERA); Quantum machine learning; NETWORKS;
D O I
10.1038/s41598-024-69384-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Tensor networks are emerging architectures for implementing quantum classification models. The branching multi-scale entanglement renormalization ansatz (BMERA) is a tensor network known for its enhanced entanglement properties. This paper introduces a hybrid quantum-classical classification model based on BMERA and explores the correlation between circuit layout, expressiveness, and classification accuracy. Additionally, we present an autodifferentiation method for computing the cost function gradient, which serves as a viable option for other hybrid quantum-classical models. Through numerical experiments, we demonstrate the accuracy and robustness of our classification model in tasks such as image recognition and cluster excitation discrimination, offering a novel approach for designing quantum classification models.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Entanglement and correlations in the continuous multi-scale entanglement renormalization ansatz
    Franco-Rubio, Adrian
    Vidal, Guifre
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (12):
  • [2] Entanglement and correlations in the continuous multi-scale entanglement renormalization ansatz
    Adrián Franco-Rubio
    Guifré Vidal
    Journal of High Energy Physics, 2017
  • [3] Quantum network communication resource optimization scheme based on multi-scale entanglement renormalization ansatz
    Lai, Hong
    Ren, Li
    Wan, Lin-Chun
    ACTA PHYSICA SINICA, 2024, 73 (23)
  • [4] Quantum-classical eigensolver using multiscale entanglement renormalization
    Miao Q.
    Barthel T.
    Physical Review Research, 2023, 5 (03):
  • [5] Hybrid quantum-classical model of quantum measurements
    Buric, N.
    Popovic, D. B.
    Radonjic, M.
    Prvanovic, S.
    PHYSICAL REVIEW A, 2013, 87 (05):
  • [6] Hybrid Quantum-Classical Convolutional Neural Network Model for Image Classification
    Fan, Fan
    Shi, Yilei
    Guggemos, Tobias
    Zhu, Xiao Xiang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (12) : 18145 - 18159
  • [7] Multiscale entanglement renormalization ansatz in two dimensions: Quantum Ising model
    Cincio, Lukasz
    Dziarmaga, Jacek
    Rams, Marek M.
    PHYSICAL REVIEW LETTERS, 2008, 100 (24)
  • [8] Quantifying quantum entanglement via a hybrid quantum-classical machine learning framework
    Lin, Xiaodie
    Chen, Zhenyu
    Wei, Zhaohui
    PHYSICAL REVIEW A, 2023, 107 (06)
  • [9] A Hybrid Quantum-Classical Algorithm for Underwater Target Classification
    Wang, Furong
    Yang, Fan
    Li, Yixing
    Fan, Gang
    He, Long
    Liu, Yang
    Bai, Yu
    Zhang, Ya
    Quantum Engineering, 2023, 2023
  • [10] Quantum-Classical Hybrid Method for Image Classification and Segmentation
    Pramanik, Sayantan
    Chandra, M. Girish
    Sridhar, C., V
    Kulkarni, Aniket
    Sahoo, Prabin
    Chethan, Vishwa D. V.
    Sharma, Hrishikesh
    Navelkar, Vidyut
    Poojary, Sudhakara
    Shah, Pranav
    Nambiar, Manoj
    2022 IEEE/ACM 7TH SYMPOSIUM ON EDGE COMPUTING (SEC 2022), 2022, : 450 - 455