Constructing Kosmotropic Salt-Compatible PVA Hydrogels for Stable Zinc Anodes via Strong Hydrogen Bonds Preshielding Effect

被引:52
作者
He, Qiong [1 ]
Zhong, Yue [1 ]
Li, Jianwen [1 ]
Chai, Simin [1 ]
Yang, Yuqing [1 ]
Liang, Shuquan [1 ]
Chang, Zhi [1 ]
Fang, Guozhao [1 ]
Pan, Anqiang [1 ,2 ,3 ]
机构
[1] Cent South Univ, Sch Mat Sci & Engn, Key Lab Elect Packaging & Adv Funct Mat Hunan Prov, Changsha 410083, Hunan, Peoples R China
[2] Xinjiang Univ, Xinjiang Environm & Funct Mat Engn Res Ctr, Sch Mat Sci & Engn, Urumqi 830046, Xinjiang, Peoples R China
[3] Xinjiang Univ, Sch Phys & Technol, Xinjiang Key Lab Solid State Phys & Devices, Urumqi 830046, Xinjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
aqueous zinc-metal batteries; ionic conductivity; kosmotropic salt; polyvinyl alcohol (PVA) hydrogel; ELECTROLYTE;
D O I
10.1002/aenm.202400170
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Physical hydrogels crosslinked by noncovalent interactions are promising in flexible zinc-metal batteries for their component controllability and environmental friendliness. However, the compatibility of PVA-based electrolyte and kosmotropic salt remains a challenge, which shows an unclear mechanism. Here, a "good-to-poor" solvent substitution strategy is adopted to develop a PVA hydrogel electrolyte with good compatibility with kosmotropic salt (ZnSO4). Stretching the polymer conformation by preshielding the strong intrachain hydrogen bonds with good solvents and activating the polymer interchain interaction in situ with poor solvents will induce the formation of a homogeneous polymer network and the release of hydrated hydroxyl groups for fast ion transport. This multiscale microstructure improves the ionic conductivity and liquid retention of PVA hydrogels with kosmotropic salt. Additionally, this strong hydrogen bonds preshielded hydrogel electrolyte offers great battery performance, with 1300 h of stable cycling at 1 mA cm-2 with low voltage hysteresis; and an extended cycle life of 220 h at 68.4% zinc utilization. Importantly, the Zn//MnO2 pouch cell maintains 98.4% capacity after 100 cycles at 0.2 A g-1 and features strong environmental reliability. These concepts address the inherent barriers of kosmotropic salt-based hydrogel electrolytes and advance their development in soft electronics. Flexible electrolytes require fundamental mechanical flexibility and electrochemical properties. This work pioneers a novel strong hydrogen bonds preshielding strategy that overcomes the inherent incompatibility of polyvinyl alcohol (PVA) and ZnSO4 salts, and stimulates high ionic conductivity and low polarization property in this system. This functional hydrogel electrolyte leverages and extends the advantages of PVA-based electrolytes for stable and flexible zinc-metal batteries. image
引用
收藏
页数:14
相关论文
共 51 条
[1]   Sweat-activated biocompatible batteries for epidermal electronic and microfluidic systems [J].
Bandodkar, A. J. ;
Lee, S. P. ;
Huang, I ;
Li, W. ;
Wang, S. ;
Su, C-J ;
Jeang, W. J. ;
Hang, T. ;
Mehta, S. ;
Nyberg, N. ;
Gutruf, P. ;
Choi, J. ;
Koo, J. ;
Reeder, J. T. ;
Tseng, R. ;
Ghaffari, R. ;
Rogers, J. A. .
NATURE ELECTRONICS, 2020, 3 (09) :554-+
[2]   An asymmetric electrolyte to simultaneously meet contradictory requirements of anode and cathode [J].
Chen, Shengmei ;
Ying, Yiran ;
Ma, Longtao ;
Zhu, Daming ;
Huang, Haitao ;
Song, Li ;
Zhi, Chunyi .
NATURE COMMUNICATIONS, 2023, 14 (01)
[3]   Perchlorate Based "Oversaturated Gel Electrolyte" for an Aqueous Rechargeable Hybrid Zn-Li Battery [J].
Chen, Shigang ;
Lan, Rong ;
Humphreys, John ;
Tao, Shanwen .
ACS APPLIED ENERGY MATERIALS, 2020, 3 (03) :2526-2536
[4]   Polyvinyl alcohol coating induced preferred crystallographic orientation in aqueous zinc battery anodes [J].
Chen, Xiujuan ;
Li, Wei ;
Hu, Shanshan ;
Akhmedov, Novruz G. ;
Reed, David ;
Li, Xiaolin ;
Liu, Xingbo .
NANO ENERGY, 2022, 98
[5]   Manipulating Zn 002 deposition plane with zirconium ion crosslinked hydrogel electrolyte toward dendrite free Zn metal anodes [J].
Cheng, Yong ;
Jiao, Yucong ;
Wu, Peiyi .
ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (10) :4561-4571
[6]   Insights on Flexible Zinc-Ion Batteries from Lab Research to Commercialization [J].
Dong, Haobo ;
Li, Jianwei ;
Guo, Jian ;
Lai, Feili ;
Zhao, Fangjia ;
Jiao, Yiding ;
Brett, Dan J. L. ;
Liu, Tianxi ;
He, Guanjie ;
Parkin, Ivan P. .
ADVANCED MATERIALS, 2021, 33 (20)
[7]   High Performance Composite Polymer Electrolytes for Lithium-Ion Batteries [J].
Fan, Peng ;
Liu, Hao ;
Marosz, Vladimir ;
Samuels, Nia T. ;
Suib, Steven L. ;
Sun, Luyi ;
Liao, Libing .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (23)
[8]   Opportunities of Flexible and Portable Electrochemical Devices for Energy Storage: Expanding the Spotlight onto Semi-solid/Solid Electrolytes [J].
Fan, Xiayue ;
Zhong, Cheng ;
Liu, Jie ;
Ding, Jia ;
Deng, Yida ;
Han, Xiaopeng ;
Zhang, Lei ;
Hu, Wenbin ;
Wilkinson, David P. ;
Zhang, Jiujun .
CHEMICAL REVIEWS, 2022, 122 (23) :17155-17239
[9]   Proton-Reservoir Hydrogel Electrolyte for Long-Term Cycling Zn/PANI Batteries in Wide Temperature Range [J].
Feng, Doudou ;
Jiao, Yucong ;
Wu, Peiyi .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (01)
[10]   Modulation of hydrogel electrolyte enabling stable zinc metal anode [J].
Fu, Chunyan ;
Wang, Yaping ;
Lu, Congge ;
Zhou, Shuang ;
He, Qiong ;
Hu, Yingzhu ;
Feng, Mingyang ;
Wan, Yuanlang ;
Lin, Jiande ;
Zhang, Yifang ;
Pan, Anqiang .
ENERGY STORAGE MATERIALS, 2022, 51 :588-598