Inverse nodal problem with fractional order conformable type derivative

被引:2
作者
Sa'idu, Auwalu [1 ]
Koyunbakan, Hikmet [1 ]
Shah, Kamal [2 ,3 ]
Abdeljawad, Thabet [2 ]
机构
[1] Firat Univ, Fac Sci, Dept Math, Elazig, Turkiye
[2] Prince Sultan Univ, Dept Math & Sci, POB 66833, Riyadh 11586, Saudi Arabia
[3] Univ Malakand, Dept Math, Khyber Pakhtunkhwa 18000, Pakistan
来源
JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS | 2024年 / 34卷 / 02期
关键词
Sturm Liouville problem; conformable derivative; nodal points; potential function; eigenparameter; STURM-LIOUVILLE OPERATORS; UNIQUENESS;
D O I
10.22436/jmcs.034.02.04
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The present paper is about the inverse nodal problem for Sturm-Liouville problem with eigenparameter in the boundary condition using the conformable derivative approach. We defined a function f(mu) generally in the boundary condition and we found the zeros of the eigenfunctions (nodal points) by nucleus function K(x,t), which is a derived transformation operator. Then, we obtained the potential function by using the nodal parameters.
引用
收藏
页码:144 / 151
页数:8
相关论文
共 36 条
[1]   On conformable fractional calculus [J].
Abdeljawad, Thabet .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 279 :57-66
[2]   Inverse problems for a conformable fractional Sturm-Liouville operator [J].
Adalar, Ibrahim ;
Ozkan, Ahmet Sinan .
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2020, 28 (06) :775-782
[3]   Swarmic autopoiesis and computational creativity [J].
Al-Rifaie, Mohammad Majid ;
Leymarie, Frederic Fol ;
Latham, William ;
Bishop, Mark .
CONNECTION SCIENCE, 2017, 29 (04) :276-294
[4]  
Alfwzan W. F., 2024, Results Control Optim., V14
[5]   Conformable fractional Sturm-Liouville equation [J].
Allahverdiev, Bilender P. ;
Tuna, Huseyin ;
Yalcinkaya, Yuksel .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (10) :3508-3526
[6]   New properties of conformable derivative [J].
Atangana, Abdon ;
Baleanu, Dumitru ;
Alsaedi, Ahmed .
OPEN MATHEMATICS, 2015, 13 :889-898
[7]   A coupled system of generalized Sturm-Liouville problems and Langevin fractional differential equations in the framework of nonlocal and nonsingular derivatives [J].
Baleanu, D. ;
Alzabut, J. ;
Jonnalagadda, J. M. ;
Adjabi, Y. ;
Matar, M. M. .
ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
[8]  
Baleanu D., 2010, New Trends in Nanotechnology and Fractional Calculus Applications, VVolume 10
[9]   Inverse nodal problem for a conformable fractional diffusion operator [J].
Cakmak, Yasar .
INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2021, 29 (09) :1308-1322
[10]   RECONSTRUCTING POTENTIALS FROM ZEROS OF ONE EIGENFUNCTION [J].
Chen, Xinfu ;
Cheng, Y. H. ;
Law, C. K. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (09) :4831-4851