Feature Engineering and Machine Learning Predictive Quality Models for Friction Stir Welding Defect Prediction in Aerospace Applications

被引:0
作者
Camps, Marta [1 ]
Etxegarai, Maddi [1 ]
Bonada, Francesc [1 ]
Lacheny, William [2 ]
Pauleau, Sylvain [2 ]
Domingo, Xavier [1 ]
机构
[1] Eurecat, Ctr Tecnol Catalunya, Unit Appl Artificial Intelligence, Ave Carrer Bilbao 72, Barcelona 08005, Spain
[2] Ariane Grp, 51-61 Route Verneuil,Batiment 71 Bur 142, F-78131 Les Mureaux, France
来源
ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT | 2022年 / 356卷
基金
欧盟地平线“2020”;
关键词
Machine Learning; Predictive Quality; Industry; 4.0; Aerospace Industry;
D O I
10.3233/FAIA220330
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data-Driven Predictive Quality solutions are of utmost importance for Industry 4.0 in general and for high added value and complex manufacturing systems in particular. A unique Friction Stir Welding process is performed for the manufacturing of the new Ariane 6 aerospace launchers. This work presents a novel feature engineering approach that correlates Friction Stir Welding process data and quality inspection data to build a Machine Learning-based predictive quality solution. This solution predicts the presence of welding defects, empowering end-user's quality assurance and reducing quality inspection time and associated costs.
引用
收藏
页码:151 / 154
页数:4
相关论文
共 12 条
[1]  
[Anonymous], US
[2]  
Boser B. E., 1992, Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, P144, DOI 10.1145/130385.130401
[3]  
Camps M., 2021, Artificial Intelligence Research and Development, P181
[4]   DISCRIMINATORY ANALYSIS - NONPARAMETRIC DISCRIMINATION - CONSISTENCY PROPERTIES [J].
FIX, E ;
HODGES, JL .
INTERNATIONAL STATISTICAL REVIEW, 1989, 57 (03) :238-247
[5]  
Hastie T., 2009, The Elements of Statistical Learning: Data Mining, Inference and Prediction, V2nd, DOI [10.1007/978-0-387-84858-7, DOI 10.1007/978-0-387-84858-7]
[6]  
Hosmer DW Jr, 2013, WILEY SER PROBAB ST, P89
[7]  
Iglewicz B., 1983, UNDERSTANDING ROBUST, P404
[8]  
Murphy K., 2006, Univ. Br. Columbia, P1
[9]   On lines and planes of closest fit to systems of points in space. [J].
Pearson, Karl .
PHILOSOPHICAL MAGAZINE, 1901, 2 (7-12) :559-572
[10]  
Sutton CD, 2005, HANDB STAT, V24, P303, DOI 10.1016/S0169-7161(04)24011-1