SPECTRUM OF THE HILBERT TRANSFORM ON ORLICZ SPACES OVER R

被引:0
作者
Akhymbek, M. E. [1 ]
Tastankul, R. A. [1 ]
Ozbekbay, B. O. [1 ]
机构
[1] Inst Math & Math Modeling, Alma Ata, Kazakhstan
来源
JOURNAL OF MATHEMATICS MECHANICS AND COMPUTER SCIENCE | 2024年 / 121卷 / 01期
关键词
Hilbert transform; spectrum; point spectrum; Orlicz space;
D O I
10.26577/JMMCS202412111
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the spectrum of the classical Hilbert transform on Orlicz spaces L phi over the real line R, extending Widom's and Jo center dot rgens's results in the context of LP spaces [3, 8], since the classical Lebesgue spaces are particular examples of Orlicz spaces when the N -function phi = xP/p. Our motivation to do so is due to the classical result of Boyd [1] which says that the Hilbert transform is bounded on certain Orlicz spaces and the fact that the spectrum of the bounded linear operator is not an empty set. We first present an auxiliary result from the general theory of Banach algebras and results from general theory of Banach spaces, which further helps us to give a full decsription of the fine spectrum of the Hilbert transform on Orlicz spaces over the real line R. We also present a resolvent set of the Hilbert transform on Orlicz spaces over the real line R as well as its resolvent operator.
引用
收藏
页码:3 / 11
页数:9
相关论文
共 11 条
  • [1] [Anonymous], 1960, Trans. Amer. Math. Soc., V97, P131
  • [2] Bennett Colin, 1988, Interpolation of Operators
  • [3] Boyd D. W., 1966, Thesis
  • [4] HILBERT TRANSFORM ON REARRANGEMENT-INVARIANT SPACES
    BOYD, DW
    [J]. CANADIAN JOURNAL OF MATHEMATICS, 1967, 19 (03): : 599 - &
  • [5] Fine spectra of the finite Hilbert transform in function spaces
    Curbera, Guillermo P.
    Okada, Susumu
    Ricker, Werner J.
    [J]. ADVANCES IN MATHEMATICS, 2021, 380
  • [6] Dowson HR., 1978, SPECTRAL THEORY LINE
  • [7] Fernandes C.A., 2021, Operator Theory, Functional Analysis and Applications, P193, DOI [10.1007/978-3-030-51945-2_10, DOI 10.1007/978-3-030-51945-2_10]
  • [8] Jorgens K., 1982, Linear integral operators, V26, P125
  • [9] King F.W., 2009, Hilbert Transforms, V1, P898
  • [10] Krasnosel'skii M.A., 1958, Convex functions and Orlics spaces