Uncovering the genetic diversity in Aedes aegypti insecticide resistance genes through global comparative genomics

被引:1
作者
Spadar, Anton [1 ]
Collins, Emma [1 ]
Messenger, Louisa A. [2 ,3 ]
Clark, Taane G. [1 ,4 ]
Campino, Susana [1 ]
机构
[1] London Sch Hyg & Trop Med, Fac Infect & Trop Dis, Dept Infect Biol, London, England
[2] Univ Nevada, Sch Publ Hlth, Dept Environm & Occupat Hlth, Las Vegas, NV USA
[3] Univ Nevada, Sch Publ Hlth, Parasitol & Vector Biol Lab, UNLV PARAVEC Lab, Las Vegas, NV USA
[4] London Sch Hyg & Trop Med, Fac Epidemiol & Populat Hlth, London, England
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
基金
英国生物技术与生命科学研究理事会; 英国医学研究理事会; 英国工程与自然科学研究理事会;
关键词
Aedes aegypti; Insecticide resistance; Vector-borne disease; Genomics; MOSQUITO PREFERENCE; VECTOR; TRANSFERASE; EVOLUTION; CHANNELS; CLIMATE; DENGUE;
D O I
10.1038/s41598-024-64007-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Aedes aegypti is vector of many arboviruses including Zika, dengue, yellow fever, West Nile, and Chikungunya. Its control efforts are hampered by widespread insecticide resistance reported in the Americas and Asia, while data from Africa is more limited. Here we use publicly available 729 Ae. aegypti whole-genome sequencing samples from 15 countries, including nine in Africa, to investigate the genetic diversity in four insecticide resistance linked genes: ace-1, GSTe2, rdl and vgsc. Apart from vgsc, the other genes have been less investigated in Ae. aegypti, and almost no genetic diversity information is available. Among the four genes, we identified 1,829 genetic variants including 474 non-synonymous substitutions, some of which have been previously documented, as well as putative copy number variations in GSTe2 and vgsc. Global insecticide resistance phenotypic data demonstrated variable resistance in geographic areas with resistant genotypes. Overall, our work provides the first global catalogue and geographic distribution of known and new amino-acid mutations and duplications that can be used to guide the identification of resistance drivers in Ae. aegypti and thereby support monitoring efforts and strategies for vector control.
引用
收藏
页数:12
相关论文
共 83 条
  • [41] Kelly ET, 2021, Front Trop Dis, V2, DOI [DOI 10.3389/FITD.2021.703873, 10.3389/fitd.2021.703873]
  • [42] An online tool for mapping insecticide resistance in major Anopheles vectors of human malaria parasites and review of resistance status for the Afrotropical region
    Knox, Tessa B.
    Juma, Elijah O.
    Ochomo, Eric O.
    Jamet, Helen Pates
    Ndungo, Laban
    Chege, Patrick
    Bayoh, Nabie M.
    N'Guessan, Raphael
    Christian, Riann N.
    Hunt, Richard H.
    Coetzee, Maureen
    [J]. PARASITES & VECTORS, 2014, 7
  • [43] Population structure of a vector of human diseases: Aedes aegypti in its ancestral range, Africa
    Kotsakiozi, Panayiota
    Evans, Benjamin R.
    Gloria-Soria, Andrea
    Kamgang, Basile
    Mayanja, Martin
    Lutwama, Julius
    Le Goff, Gilbert
    Ayala, Diego
    Paupy, Christophe
    Badolo, Athanase
    Pinto, Joao
    Sousa, Carla A.
    Troco, Arlete D.
    Powell, Jeffrey R.
    [J]. ECOLOGY AND EVOLUTION, 2018, 8 (16): : 7835 - 7848
  • [44] The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus
    Kraemer, Moritz U. G.
    Sinka, Marianne E.
    Duda, Kirsten A.
    Mylne, Adrian Q. N.
    Shearer, Freya M.
    Barker, Christopher M.
    Moore, Chester G.
    Carvalho, Roberta G.
    Coelho, Giovanini E.
    Van Bortel, Wim
    Hendrickx, Guy
    Schaffner, Francis
    Elyazar, Iqbal R. F.
    Teng, Hwa-Jen
    Brady, Oliver J.
    Messina, Jane P.
    Pigott, David M.
    Scott, Thomas W.
    Smith, David L.
    Wint, G. R. William
    Golding, Nick
    Hay, Simon I.
    [J]. ELIFE, 2015, 4
  • [45] Langmead B, 2012, NAT METHODS, V9, P357, DOI [10.1038/NMETH.1923, 10.1038/nmeth.1923]
  • [46] Genome-wide divergence among invasive populations of Aedes aegypti in California
    Lee, Yoosook
    Schmidt, Hanno
    Collier, Travis C.
    Conner, William R.
    Hanemaaijer, Mark J.
    Slatkin, Montgomery
    Marshall, John M.
    Chiu, Joanna C.
    Smartt, Chelsea T.
    Lanzaro, Gregory C.
    Mulligan, F. Steve
    Cornel, Anthony J.
    [J]. BMC GENOMICS, 2019, 20 (1)
  • [47] Enzymatic and molecular characterization of insecticide resistance mechanisms in field populations of Aedes aegypti from Selangor, Malaysia
    Leong, Cherng-Shii
    Vythilingam, Indra
    Liew, Jonathan Wee-Kent
    Wong, Meng-Li
    Wan-Yusoff, Wan Sulaiman
    Lau, Yee-Ling
    [J]. PARASITES & VECTORS, 2019, 12 (1)
  • [48] The Sequence Alignment/Map format and SAMtools
    Li, Heng
    Handsaker, Bob
    Wysoker, Alec
    Fennell, Tim
    Ruan, Jue
    Homer, Nils
    Marth, Gabor
    Abecasis, Goncalo
    Durbin, Richard
    [J]. BIOINFORMATICS, 2009, 25 (16) : 2078 - 2079
  • [49] Insecticide Resistance in Mosquitoes: Impact, Mechanisms, and Research Directions
    Liu, Nannan
    [J]. ANNUAL REVIEW OF ENTOMOLOGY, VOL 60, 2015, 60 : 537 - 559
  • [50] The role of the Aedes aegypti Epsilon glutathione transferases in conferring resistance to DDT and pyrethroid insecticides
    Lumjuan, Nongkran
    Rajatileka, Shavanthi
    Changsom, Donch
    Wicheer, Jureeporn
    Leelapat, Posri
    Prapanthadara, La-aied
    Somboon, Pradya
    Lycett, Gareth
    Ranson, Hilary
    [J]. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY, 2011, 41 (03) : 203 - 209