Multi-scale characterization of submicronic NASICON-type solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 degraded by spark plasma sintering

被引:8
作者
Courbaron, Gwenaelle [1 ,2 ]
Nuernberg, Rafael Bianchini [1 ]
Sevillano, Jon Serrano [1 ,4 ,5 ]
Chung, U. -Chan [1 ]
Duttine, Mathieu [1 ]
Labrugere-Sarroste, Christine [6 ]
Olchowka, Jacob [1 ,3 ,4 ]
Carlier, Dany [1 ,3 ,4 ]
Delpuech, Nathalie [2 ,3 ,4 ]
Croguennec, Laurence [1 ,3 ,4 ]
机构
[1] Univ Bordeaux, CNRS, Bordeaux INP, ICMCB,UMR 5026, F-33600 Pessac, France
[2] Renault SAS, Technoctr, 1 Ave Golf, F-78280 Guyancourt, France
[3] Reseau Francais Stockage Electrochim Energie, CNRS, RS2E, FR 3459, Toulouse, France
[4] ALISTORE ERI European Res Inst, CNRS, FR 3104, F-80039 Amiens, France
[5] Basque Res & Technol Alliance BRTA, Ctr Invest Cooperat Energias Alternat CIC energiGU, Parque Tecnol Alava,Albert Einstein 48, Vitoria 01510, Parque Tecnolo, Spain
[6] Univ Bordeaux, CNRS, PLACAMAT, UAR 3626, F-33600 Pessac, France
关键词
NASICON structure; Phosphate inorganic electrolyte; Spark plasma sintering; Multi-scale reactivity; Conductivity; Electronic Spin Resonance spectroscopy; Solid-state Nuclear Magnetic Resonance; spectroscopy; X-ray Photoelectron Spectroscopy; IONIC-CONDUCTIVITY; PARAMAGNETIC-RESONANCE; LITHIUM; CERAMICS; BATTERIES; NMR; LI1+XALXTI2-X(PO4)(3); PROGRESS; TI;
D O I
10.1016/j.jallcom.2024.174062
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
One of the most promising and developed disruptive technology of energy storage for the future is all solid-state batteries. The NASICON phase LATP (Li1.3Al0.3Ti1.7(PO4)3) is widely studied especially thanks to its high ionic conductivity and mechanical strength. However, high temperature densification is required to obtain a dense and conductive material. Here we explore the fast sintering by Spark Plasma Sintering (SPS) of submicronic LATP particles, and the impact of the heating rate on the physico-chemical and transport properties of the pristine powder. High-speed rate for the sintering process induces particles' growth, avoiding any reduction of titanium. The impurity AlPO4 plays a major role on the conductivity, depending on its content but also on its distribution within the composite, either as a coating (surface modification) or as crystalline particles within the grain boundaries. An intimate understanding of the ceramic composites was achieved using combination of advanced characterization techniques to get a multi-scale description of the material, from the pristine to the sintered states, from the surface to the bulk, and from the atomic long range to the local scales. Sharing these fundamental results is essential, with among other motivations, the spreading of our interpretation of complex spectroscopic results (Electronic Spin Resonance (ESR) spectroscopy, solid-state Nuclear Magnetic Resonance (NMR) spectroscopy and X-ray Photoelectron Spectroscopy (XPS)), key for characterization of reactivities at interfaces in this work and in others.
引用
收藏
页数:13
相关论文
共 58 条
[1]   On the structure of Li3Ti2(PO4)3 [J].
Aatiq, A ;
Ménétrier, M ;
Croguennec, L ;
Suard, E ;
Delmas, C .
JOURNAL OF MATERIALS CHEMISTRY, 2002, 12 (10) :2971-2978
[2]   A New Approach to Develop Safe All-Inorganic Monolithic Li-Ion Batteries [J].
Aboulaich, Abelmaula ;
Bouchet, Renaud ;
Delaizir, Gaelle ;
Seznec, Vincent ;
Tortet, Laurence ;
Morcrette, Mathieu ;
Rozier, Patrick ;
Tarascon, Jean-Marie ;
Viallet, Virginie ;
Dolle, Mickael .
ADVANCED ENERGY MATERIALS, 2011, 1 (02) :179-183
[3]   ELECTRON-PARAMAGNETIC RESONANCE SPECTROSCOPIC DETERMINATION OF TI-3+ IN SEVERAL TITANIUM PHOSPHATE-COMPOUNDS [J].
ABRAHAM, MM ;
BAMBERGER, CE .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1991, 74 (09) :2299-2300
[4]   IONIC-CONDUCTIVITY OF SOLID ELECTROLYTES BASED ON LITHIUM TITANIUM PHOSPHATE [J].
AONO, H ;
SUGIMOTO, E ;
SADAOKA, Y ;
IMANAKA, N ;
ADACHI, G .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1990, 137 (04) :1023-1027
[5]   High lithium ion conducting solid electrolytes based on NASICON Li1+xAlxM2-x(PO4)3 materials (M = Ti, Ge and 0 ≤ x ≤ 0.5) [J].
Arbi, K. ;
Bucheli, W. ;
Jimenez, R. ;
Sanz, J. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2015, 35 (05) :1477-1484
[6]   Dependence of ionic conductivity on composition of fast ionic conductors Li1+xTi2-xAlx(PO4)3, 0 ≤ x ≤ 0.7.: A parallel NMR and electric impedance study [J].
Arbi, K ;
Mandal, S ;
Rojo, JM ;
Sanz, J .
CHEMISTRY OF MATERIALS, 2002, 14 (03) :1091-1097
[7]   Preparation and characterization of sol-gel derived high lithium ion conductive NZP-type ceramics Li1+x AlxTi2-x(PO4)3 [J].
Bucharsky, E. C. ;
Schell, K. G. ;
Hintennach, A. ;
Hoffmann, M. J. .
SOLID STATE IONICS, 2015, 274 :77-82
[8]   Vibrational spectroscopic study of lithium intercalation into LiTi2(PO4)3 [J].
Burba, Christopher M. ;
Frech, Roger .
SOLID STATE IONICS, 2006, 177 (17-18) :1489-1494
[9]  
Cavaliere P., 2019, Spark Plasma Sintering of Materials: Advances in Processing and Applications, P3, DOI DOI 10.1007/978-3-030-05327-7_1
[10]   Spark plasma sintering of LiTi2(PO4)3-based solid electrolytes [J].
Chang, CM ;
Lee, YI ;
Hong, SH ;
Park, HM .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2005, 88 (07) :1803-1807