Dynamical edge modes and entanglement in Maxwell theory

被引:8
|
作者
Ball, Adam [1 ]
Law, Y. T. Albert [2 ,3 ,4 ]
Wong, Gabriel [5 ,6 ]
机构
[1] Perimeter Inst Theoret Phys, Waterloo, ON, Canada
[2] Harvard Univ, Ctr Fundamental Laws Nat, Cambridge, MA USA
[3] Harvard Univ, Black Hole Initiat, Cambridge, MA USA
[4] Stanford Inst Theoret Phys, Stanford, CA USA
[5] Harvard CMSA, Cambridge, MA USA
[6] Univ Oxford, Math Inst, Oxford, England
来源
基金
英国科学技术设施理事会;
关键词
Gauge Symmetry; Global Symmetries; NOETHER CHARGE; SITTER SPACE; FIELD-THEORY; HIGHER SPINS; ENTROPY; MASSLESSNESS; DETERMINANTS; PROPAGATION;
D O I
10.1007/JHEP09(2024)032
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Previous work on black hole partition functions and entanglement entropy suggests the existence of "edge" degrees of freedom living on the (stretched) horizon. We identify a local and "shrinkable" boundary condition on the stretched horizon that gives rise to such degrees of freedom. They can be interpreted as the Goldstone bosons of gauge transformations supported on the boundary, with the electric field component normal to the boundary as their symplectic conjugate. Applying the covariant phase space formalism for manifolds with boundary, we show that both the symplectic form and Hamiltonian exhibit a bulk-edge split. We then show that the thermal edge partition function is that of a codimension-two ghost compact scalar living on the horizon. In the context of a de Sitter static patch, this agrees with the edge partition functions found by Anninos et al. in arbitrary dimensions. It also yields a 4D entanglement entropy consistent with the conformal anomaly. Generalizing to Proca theory, we find that the prescription of Donnelly and Wall reproduces existing results for its edge partition function, while its classical phase space does not exhibit a bulk-edge split.
引用
收藏
页数:63
相关论文
共 50 条
  • [1] Dynamical edge modes in Maxwell theory from a BRST perspective, with an application to the Casimir energy
    Fabrizio Canfora
    David Dudal
    Thomas Oosthuyse
    Luigi Rosa
    Sebbe Stouten
    Journal of High Energy Physics, 2025 (3)
  • [2] A note on entanglement edge modes in Chern Simons theory
    Wong, Gabriel
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (08):
  • [3] A note on entanglement edge modes in Chern Simons theory
    Gabriel Wong
    Journal of High Energy Physics, 2018
  • [4] Edge modes and surface-preserving symmetries in Einstein-Maxwell theory
    Setare, Mohammad Reza
    Adami, Hamed
    NUCLEAR PHYSICS B, 2020, 950
  • [5] Entanglement Entropy of Electromagnetic Edge Modes
    Donnelly, William
    Wall, Aron C.
    PHYSICAL REVIEW LETTERS, 2015, 114 (11)
  • [6] Entanglement entropy of gravitational edge modes
    David, Justin R.
    Mukherjee, Jyotirmoy
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (08)
  • [7] Entanglement entropy of gravitational edge modes
    Justin R. David
    Jyotirmoy Mukherjee
    Journal of High Energy Physics, 2022
  • [8] Entanglement entropy and the boundary action of edge modes
    Mukherjee, Jyotirmoy
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, (06):
  • [9] Maxwell, Measurement, and the Modes of Electromagnetic Theory
    Hunt, Bruce J.
    Historical Studies in the Natural Sciences, 2015, 45 (02) : 303 - 339
  • [10] Dynamical entanglement for Fermi coupled stretching and bending modes
    侯喜文
    成传明
    Chinese Physics B, 2009, 18 (07) : 2719 - 2723