Dynamical edge modes and entanglement in Maxwell theory

被引:8
作者
Ball, Adam [1 ]
Law, Y. T. Albert [2 ,3 ,4 ]
Wong, Gabriel [5 ,6 ]
机构
[1] Perimeter Inst Theoret Phys, Waterloo, ON, Canada
[2] Harvard Univ, Ctr Fundamental Laws Nat, Cambridge, MA USA
[3] Harvard Univ, Black Hole Initiat, Cambridge, MA USA
[4] Stanford Inst Theoret Phys, Stanford, CA USA
[5] Harvard CMSA, Cambridge, MA USA
[6] Univ Oxford, Math Inst, Oxford, England
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2024年 / 09期
基金
英国科学技术设施理事会;
关键词
Gauge Symmetry; Global Symmetries; NOETHER CHARGE; SITTER SPACE; FIELD-THEORY; HIGHER SPINS; ENTROPY; MASSLESSNESS; DETERMINANTS; PROPAGATION;
D O I
10.1007/JHEP09(2024)032
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Previous work on black hole partition functions and entanglement entropy suggests the existence of "edge" degrees of freedom living on the (stretched) horizon. We identify a local and "shrinkable" boundary condition on the stretched horizon that gives rise to such degrees of freedom. They can be interpreted as the Goldstone bosons of gauge transformations supported on the boundary, with the electric field component normal to the boundary as their symplectic conjugate. Applying the covariant phase space formalism for manifolds with boundary, we show that both the symplectic form and Hamiltonian exhibit a bulk-edge split. We then show that the thermal edge partition function is that of a codimension-two ghost compact scalar living on the horizon. In the context of a de Sitter static patch, this agrees with the edge partition functions found by Anninos et al. in arbitrary dimensions. It also yields a 4D entanglement entropy consistent with the conformal anomaly. Generalizing to Proca theory, we find that the prescription of Donnelly and Wall reproduces existing results for its edge partition function, while its classical phase space does not exhibit a bulk-edge split.
引用
收藏
页数:63
相关论文
共 113 条
  • [1] Gauge-invariant variables and entanglement entropy
    Agarwal, Abhishek
    Karabali, Dimitra
    Nair, V. P.
    [J]. PHYSICAL REVIEW D, 2017, 96 (12)
  • [2] Agia N., arXiv
  • [3] Agia N, 2024, Arxiv, DOI arXiv:2402.05167
  • [4] Disk entanglement entropy for a Maxwell field
    Agon, Cesar A.
    Headrick, Matthew
    Jafferis, Daniel L.
    Kasko, Skyler
    [J]. PHYSICAL REVIEW D, 2014, 89 (02)
  • [5] An ZS, 2021, Arxiv, DOI arXiv:2103.15673
  • [6] On boundary value problems for Einstein metrics
    Anderson, Michael T.
    [J]. GEOMETRY & TOPOLOGY, 2008, 12 : 2009 - 2045
  • [7] Quantum de Sitter horizon entropy from quasicanonical bulk, edge, sphere and topological string partition functions
    Anninos, Dionysios
    Denef, Frederik
    Law, Y. T. Albert
    Sun, Zimo
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (01)
  • [8] On the definition of entanglement entropy in lattice gauge theories
    Aoki, Sinya
    Iritani, Takumi
    Nozaki, Masahiro
    Numasawa, Tokiro
    Shiba, Nobura
    Tasaki, Hal
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2015, (06):
  • [9] Balasubramanian V, 2024, Arxiv, DOI arXiv:2312.08434
  • [10] Edge observables of the Maxwell-Chern-Simons theory
    Barbero G, J. Fernando
    Diaz, Bogar
    Margalef-Bentabol, Juan
    Villasenor, Eduardo J. S.
    [J]. PHYSICAL REVIEW D, 2022, 106 (02)