Ultrafast state-selective tunneling in two-dimensional semiconductors with a phase- and amplitude-controlled THz-scanning tunneling microscope

被引:4
作者
Bobzien, L. [1 ]
Allerbeck, J. [1 ]
Ammerman, S. E. [1 ]
Torsi, R. [2 ]
Robinson, J. A. [2 ,3 ,4 ]
Schuler, B. [1 ]
机构
[1] Empa Swiss Fed Inst Mat Sci & Technol, nanotechsurfaces Lab, CH-8600 Dubendorf, Switzerland
[2] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16082 USA
[3] Penn State Univ, Two Dimens Crystal Consortium, University Pk, PA 16802 USA
[4] Penn State Univ, Ctr Dimens & Layered Mat 2, University Pk, PA 16802 USA
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
SINGLE-MOLECULE; TERAHERTZ; SPECTROSCOPY; LIFETIMES; DYNAMICS; EXCITONS; MOTION; SPIN;
D O I
10.1063/5.0200845
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
THz-pulse driven scanning tunneling microscopy (THz-STM) enables access to the ultrafast quantum dynamics of low-dimensional material systems at simultaneous ultrafast temporal and atomic spatial resolution. State-selective tunneling requires precise amplitude and phase control of the THz pulses combined with quantitative near-field waveform characterization. Here, we employ our state-of-the-art THz-STM with multi-MHz repetition rates, efficient THz generation, and precisely tunable THz waveforms to investigate a single sulfur vacancy in monolayer MoS2. We demonstrate that 2D transition metal dichalcogenides (TMDs) are an ideal platform for near-field waveform sampling by THz cross-correlation. Furthermore, we determine the THz voltage via QEV scans, which measure the THz rectified charge Q as a function of THz field amplitude E and dc bias Vdc. Mapping the complex energy landscape of localized states with a resolution down to 0.01 electrons per pulse facilitates state-selective tunneling to the HOMO and LUMO orbitals of a charged sulfur vacancy.
引用
收藏
页数:8
相关论文
共 37 条
[1]   Efficient and Continuous Carrier-Envelope Phase Control for Terahertz Lightwave-Driven Scanning Probe Microscopy [J].
Allerbeck, Jonas ;
Kuttruff, Joel ;
Bobzien, Laric ;
Huberich, Lysander ;
Tsarev, Maxim ;
Schuler, Bruno .
ACS PHOTONICS, 2023, 10 (11) :3888-3895
[2]   Algorithm for subcycle terahertz scanning tunneling spectroscopy [J].
Ammerman, S. E. ;
Wei, Y. ;
Everett, N. ;
Jelic, V. ;
Cocker, T. L. .
PHYSICAL REVIEW B, 2022, 105 (11)
[3]   Lightwave-driven scanning tunnelling spectroscopy of atomically precise graphene nanoribbons [J].
Ammerman, S. E. ;
Jelic, V ;
Wei, Y. ;
Breslin, V. N. ;
Hassan, M. ;
Everett, N. ;
Lee, S. ;
Sun, Q. ;
Pignedoli, C. A. ;
Ruffieux, P. ;
Fasel, R. ;
Cocker, T. L. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[4]   Time-resolved ARPES studies of quantum materials [J].
Boschini, Fabio ;
Zonno, Marta ;
Damascelli, Andrea .
REVIEWS OF MODERN PHYSICS, 2024, 96 (01)
[5]   Exciton Lifetime and Optical Line Width Profile via Exciton-Phonon Interactions: Theory and First-Principles Calculations for Monolayer MoS2 [J].
Chan, Yang-hao ;
Haber, Jonah B. ;
Naik, Mit H. ;
Neaton, Jeffrey B. ;
Qiu, Diana Y. ;
da Jornada, Felipe H. ;
Louie, Steven G. .
NANO LETTERS, 2023, 23 (09) :3971-3977
[6]   Spin-dependent vibronic response of a carbon radical ion in two-dimensional WS2 [J].
Cochrane, Katherine A. ;
Lee, Jun-Ho ;
Kastl, Christoph ;
Haber, Jonah B. ;
Zhang, Tianyi ;
Kozhakhmetov, Azimkhan ;
Robinson, Joshua A. ;
Terrones, Mauricio ;
Repp, Jascha ;
Neaton, Jeffrey B. ;
Weber-Bargioni, Alexander ;
Schuler, Bruno .
NATURE COMMUNICATIONS, 2021, 12 (01)
[7]   Nanoscale terahertz scanning probe microscopy [J].
Cocker, T. L. ;
Jelic, V. ;
Hillenbrand, R. ;
Hegmann, F. A. .
NATURE PHOTONICS, 2021, 15 (08) :558-569
[8]   Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging [J].
Cocker, Tyler L. ;
Peller, Dominik ;
Yu, Ping ;
Repp, Jascha ;
Huber, Rupert .
NATURE, 2016, 539 (7628) :263-+
[9]   Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges [J].
Duan, Xidong ;
Wang, Chen ;
Pan, Anlian ;
Yu, Ruqin ;
Duan, Xiangfeng .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (24) :8859-8876
[10]   Determining the temperature of a millikelvin scanning tunnelling microscope junction [J].
Esat, Taner ;
Yang, Xiaosheng ;
Mustafayev, Farhad ;
Soltner, Helmut ;
Tautz, F. Stefan ;
Temirov, Ruslan .
COMMUNICATIONS PHYSICS, 2023, 6 (01)