COMPACT QUASI-NEWTON PRECONDITIONERS FOR SPD LINEAR SYSTEMS

被引:0
|
作者
Bergamaschi, L. [1 ]
Marin, J. [2 ]
Martinez, And A. [3 ]
机构
[1] Department of Civil Environmental and Architectural Engineering, University of Padova, Italy
[2] Instituto de Matemática Multidisciplinar, Departamento de Matemática Aplicada, Universidad Politécnica de Valencia
[3] Department of Mathematics and Earth Sciences, University of Trieste, Italy
来源
arXiv | 2020年
关键词
921 Mathematics - 921.1 Algebra - 921.6 Numerical Methods - 961 Systems Science;
D O I
暂无
中图分类号
学科分类号
摘要
Conjugate gradient method
引用
收藏
相关论文
共 50 条
  • [31] THE QUASI-NEWTON LEAST SQUARES METHOD: A NEW AND FAST SECANT METHOD ANALYZED FOR LINEAR SYSTEMS
    Haelterman, Rob
    Degroote, Joris
    Van Heule, Dirk
    Vierendeels, Jan
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (03) : 2347 - 2368
  • [32] APPROXIMATE QUASI-NEWTON METHODS
    KELLEY, CT
    SACHS, EW
    MATHEMATICAL PROGRAMMING, 1990, 48 (01) : 41 - 70
  • [33] QUASI-NEWTON METHOD WITH NO DERIVATIVES
    GREENSTADT, J
    MATHEMATICS OF COMPUTATION, 1972, 26 (117) : 145 - +
  • [34] A classification of quasi-Newton methods
    Brezinski, C
    NUMERICAL ALGORITHMS, 2003, 33 (1-4) : 123 - 135
  • [35] Decentralized Quasi-Newton Methods
    Eisen, Mark
    Mokhtari, Aryan
    Ribeiro, Alejandro
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (10) : 2613 - 2628
  • [36] Quasi-Newton Based Preconditioning and Damped Quasi-Newton Schemes for Nonlinear Conjugate Gradient Methods
    Al-Baali, Mehiddin
    Caliciotti, Andrea
    Fasano, Giovanni
    Roma, Massimo
    NUMERICAL ANALYSIS AND OPTIMIZATION, 2018, 235 : 1 - 21
  • [37] A Classification of Quasi-Newton Methods
    C. Brezinski
    Numerical Algorithms, 2003, 33 : 123 - 135
  • [38] A global convergent quasi-Newton method for systems of monotone equations
    Chen Z.
    Cheng W.
    Li X.
    Journal of Applied Mathematics and Computing, 2014, 44 (1-2) : 455 - 465
  • [39] Quasi-Newton acceleration of ILU preconditioners for nonlinear two-phase flow equations in porous media
    Bergamaschi, L.
    Bru, R.
    Martinez, A.
    Putti, M.
    ADVANCES IN ENGINEERING SOFTWARE, 2012, 46 (01) : 63 - 68
  • [40] NEW QUASI-NEWTON METHOD FOR SOLVING SYSTEMS OF NONLINEAR EQUATIONS
    Luksan, Ladislav
    Vlcek, Jan
    APPLICATIONS OF MATHEMATICS, 2017, 62 (02) : 121 - 134