Hamilton-Jacobi-Bellman Approach for Optimal Control Problems of Sweeping Processes

被引:1
|
作者
Hermosilla, Cristopher [1 ]
Palladino, Michele [2 ]
Vilches, Emilio [3 ]
机构
[1] Univ Tecn Federico Santa Maria, Dept Matemat, Ave Espana 1680, Valparaiso, Chile
[2] Univ Aquila, Dept, Via Vetoio, Laquila, Italy
[3] Univ OHiggins, Inst Ciencias Ingn, Ave Libertador Bernardo OHiggins 611, Rancagua 2820000, Chile
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 2024年 / 90卷 / 02期
关键词
State constraints; Infinite horizon problems; Sweeping processes; Hamilton-Jacobi-Bellman equations; Optimal control;
D O I
10.1007/s00245-024-10174-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with a state constrained optimal control problem governed by a Moreau's sweeping process with a controlled drift. The focus of this work is on the Bellman approach for an infinite horizon problem. In particular, we focus on the regularity of the value function and on the Hamilton-Jacobi-Bellman equation it satisfies. We discuss a uniqueness result and we make a comparison with standard state constrained optimal control problems to highlight a regularizing effect that the sweeping process induces on the value function.
引用
收藏
页数:40
相关论文
共 50 条
  • [1] Hamilton-Jacobi-Bellman Approach for Optimal Control Problems of Sweeping Processes
    Hermosilla, Cristopher
    Palladino, Michelle
    Vilches, Emilio
    SSRN, 2023,
  • [2] Hamilton-Jacobi-Bellman equations with Γ-convergence for optimal control problems
    Briani, A
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2000, 3A : 29 - 32
  • [3] Hamilton-Jacobi-Bellman equations and optimal control
    Dolcetta, IC
    VARIATIONAL CALCULUS, OPTIMAL CONTROL AND APPLICATIONS, 1998, 124 : 121 - 132
  • [4] A Hamilton-Jacobi-Bellman approach for the optimal control of an abort landing problem
    Assellaou, Mohamed
    Bokanowski, Olivier
    Desilles, Anya
    Zidani, Hasnaa
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 3630 - 3635
  • [5] A Hamilton-Jacobi-Bellman approach to optimal trade execution
    Forsyth, Peter A.
    APPLIED NUMERICAL MATHEMATICS, 2011, 61 (02) : 241 - 265
  • [6] Hamilton-Jacobi-Bellman equations for quantum optimal control
    Gough, J.
    Belavkin, V. A.
    Smolyanov, O. G.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE DAYS ON DIFFRACTION 2006, 2006, : 293 - 297
  • [7] A feedback optimal control by Hamilton-Jacobi-Bellman equation
    Zhu, Jinghao
    EUROPEAN JOURNAL OF CONTROL, 2017, 37 : 70 - 74
  • [8] Hamilton-Jacobi-Bellman equations for optimal control processes with convex state constraints
    Hermosilla, Cristopher
    Vinter, Richard
    Zidani, Hasnaa
    SYSTEMS & CONTROL LETTERS, 2017, 109 : 30 - 36
  • [9] Local solutions to the Hamilton-Jacobi-Bellman equation in stochastic problems of optimal control
    A. S. Bratus’
    D. V. Iourtchenko
    J. -L. Menaldi
    Doklady Mathematics, 2006, 74 : 610 - 613
  • [10] Local solutions to the Hamilton-Jacobi-Bellman equation in stochastic problems of optimal control
    Bratus, A. S.
    Iourtchenko, D. V.
    Menaldi, J.-L.
    DOKLADY MATHEMATICS, 2006, 74 (01) : 610 - 613