A neural network-based framework to understand the type 2 diabetes-related alteration of the human gut microbiome

被引:9
作者
Guo, Shun [1 ,2 ,3 ,4 ]
Zhang, Haoran [1 ,2 ,3 ]
Chu, Yunmeng [1 ,2 ,3 ]
Jiang, Qingshan [4 ]
Ma, Yingfei [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Synthet Biol, Shenzhen Inst Adv Technol, Shenzhen 518055, Guangdong, Peoples R China
[2] Chinese Acad Sci, Shenzhen Inst Adv Technol, Key Lab Quantitat Engn Biol, Shenzhen, Guangdong, Peoples R China
[3] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen Key Lab Synthet Genom, Guangdong Prov Key Lab Synthet Genom, Shenzhen, Guangdong, Peoples R China
[4] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen Key Lab High Performance Data Min, Shenzhen 518000, Guangdong, Peoples R China
来源
IMETA | 2022年 / 1卷 / 02期
关键词
human gut microbiota; neural network; random forest; T2D-related microbial markers; METAGENOME; SEQUENCE;
D O I
10.1002/imt2.20
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The identification of microbial markers adequate to delineate the disease-related microbiome alterations from the complex human gut microbiota is of great interest. Here, we develop a framework combining neural network (NN) and random forest, resulting in 40 marker species and 90 marker genes identified from the metagenomic data set (185 healthy and 183 type 2 diabetes [T2D] samples), respectively. In terms of these markers, the NN model obtained higher accuracy in classifying the T2D-related samples than other methods; the interaction network analyses identified the key species and functional modules; the regression analysis determined that fasting blood glucose is the most significant factor (p < 0.05) in the T2D-related alteration of the human gut microbiome. We also observed that those marker species varied little across the case and control samples greatly shift in the different stages of the T2D development, suggestive of their important roles in the T2D-related microbiome alteration. Our study provides a new way of identifying the disease-related biomarkers and analyzing the role they may play in the development of the disease.
引用
收藏
页数:14
相关论文
共 40 条
[1]   Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning [J].
Alipanahi, Babak ;
Delong, Andrew ;
Weirauch, Matthew T. ;
Frey, Brendan J. .
NATURE BIOTECHNOLOGY, 2015, 33 (08) :831-+
[2]   Deep learning for computational biology [J].
Angermueller, Christof ;
Parnamaa, Tanel ;
Parts, Leopold ;
Stegle, Oliver .
MOLECULAR SYSTEMS BIOLOGY, 2016, 12 (07)
[3]   DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data [J].
Arango-Argoty, Gustavo ;
Garner, Emily ;
Prudent, Amy ;
Heath, Lenwood S. ;
Vikesland, Peter ;
Zhang, Liqing .
MICROBIOME, 2018, 6
[4]   Machine Learning-Assisted Network Inference Approach to Identify a New Class of Genes that Coordinate the Functionality of Cancer Networks [J].
Bari, Mehrab Ghanat ;
Ung, Choong Yong ;
Zhang, Cheng ;
Zhu, Shizhen ;
Li, Hu .
SCIENTIFIC REPORTS, 2017, 7
[5]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[6]   Fast and sensitive protein alignment using DIAMOND [J].
Buchfink, Benjamin ;
Xie, Chao ;
Huson, Daniel H. .
NATURE METHODS, 2015, 12 (01) :59-60
[7]   Next-Generation Machine Learning for Biological Networks [J].
Camacho, Diogo M. ;
Collins, Katherine M. ;
Powers, Rani K. ;
Costello, James C. ;
Collins, James J. .
CELL, 2018, 173 (07) :1581-1592
[8]   The rise of deep learning in drug discovery [J].
Chen, Hongming ;
Engkvist, Ola ;
Wang, Yinhai ;
Olivecrona, Marcus ;
Blaschke, Thomas .
DRUG DISCOVERY TODAY, 2018, 23 (06) :1241-1250
[9]   APPLICATIONS OF NEXT-GENERATION SEQUENCING The human microbiome: at the interface of health and disease [J].
Cho, Ilseung ;
Blaser, Martin J. .
NATURE REVIEWS GENETICS, 2012, 13 (04) :260-270
[10]   OPINION Antibiotics in early life and obesity [J].
Cox, Laura M. ;
Blaser, Martin J. .
NATURE REVIEWS ENDOCRINOLOGY, 2015, 11 (03) :182-190