Discrimination between healthy participants and people with panic disorder based on polygenic scores for psychiatric disorders and for intermediate phenotypes using machine learning

被引:0
作者
Ohi, Kazutaka [1 ,2 ]
Tanaka, Yuta [3 ]
Otowa, Takeshi [4 ]
Shimada, Mihoko [5 ]
Kaiya, Hisanobu [6 ]
Nishimura, Fumichika [7 ]
Sasaki, Tsukasa [8 ]
Tanii, Hisashi [9 ,10 ]
Shioiri, Toshiki [1 ]
Hara, Takeshi [3 ]
机构
[1] Gifu Univ, Grad Sch Med, Dept Psychiat, 1-1 Yanagido, Gifu 5011194, Japan
[2] Kanazawa Med Univ, Dept Gen Internal Med, Kanazawa, Ishikawa, Japan
[3] Gifu Univ, Grad Sch Nat Sci & Technol, Dept Intelligence Sci & Engn, Gifu, Japan
[4] Nagoya City Univ, East Med Ctr, Dept Psychiat, Nagoya, Japan
[5] Natl Ctr Global Hlth & Med NCGM, Genome Med Sci Project Toyama, Tokyo, Japan
[6] Warakukai Med Corp, Pan Disorder Res Ctr, Tokyo, Japan
[7] Univ Tokyo, Ctr Res Counseling & Support Serv, Tokyo, Japan
[8] Univ Tokyo, Grad Sch Educ, Dept Phys & Hlth Educ, Tokyo, Japan
[9] Mie Univ, Ctr Phys & Mental Hlth, Tsu, Mie, Japan
[10] Mie Univ, Grad Sch Med, Dept Hlth Promot & Dis Prevent, Tsu, Mie, Japan
基金
日本学术振兴会;
关键词
Panic disorder; intermediate phenotype; polygenic score; machine learning; classifier; GENOME-WIDE ASSOCIATION; ENVIRONMENTAL RISK-FACTORS; LIFETIME PREVALENCE; ANXIETY DISORDERS; SCHIZOPHRENIA; METAANALYSIS; LOCI; COMORBIDITY; VARIANTS; EPIDEMIOLOGY;
D O I
10.1177/00048674241242936
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
Objective: Panic disorder is a modestly heritable condition. Currently, diagnosis is based only on clinical symptoms; identifying objective biomarkers and a more reliable diagnostic procedure is desirable. We investigated whether people with panic disorder can be reliably diagnosed utilizing combinations of multiple polygenic scores for psychiatric disorders and their intermediate phenotypes, compared with single polygenic score approaches, by applying specific machine learning techniques.Methods: Polygenic scores for 48 psychiatric disorders and intermediate phenotypes based on large-scale genome-wide association studies (n = 7556-1,131,881) were calculated for people with panic disorder (n = 718) and healthy controls (n = 1717). Discrimination between people with panic disorder and healthy controls was based on the 48 polygenic scores using five methods for classification: logistic regression, neural networks, quadratic discriminant analysis, random forests and a support vector machine. Differences in discrimination accuracy (area under the curve) due to an increased number of polygenic score combinations and differences in the accuracy across five classifiers were investigated.Results: All five classifiers performed relatively well for distinguishing people with panic disorder from healthy controls by increasing the number of polygenic scores. Of the 48 polygenic scores, the polygenic score for anxiety UK Biobank was the most useful for discrimination by the classifiers. In combinations of two or three polygenic scores, the polygenic score for anxiety UK Biobank was included as one of polygenic scores in all classifiers. When all 48 polygenic scores were used in combination, the greatest areas under the curve significantly differed among the five classifiers. Support vector machine and logistic regression had higher accuracy than quadratic discriminant analysis and random forests. For each classifier, the greatest area under the curve was 0.600 +/- 0.030 for logistic regression (polygenic score combinations N = 14), 0.591 +/- 0.039 for neural networks (N = 9), 0.603 +/- 0.033 for quadratic discriminant analysis (N = 10), 0.572 +/- 0.039 for random forests (N = 25) and 0.617 +/- 0.041 for support vector machine (N = 11). The greatest areas under the curve at the best polygenic score combination significantly differed among the five classifiers. Random forests had the lowest accuracy among classifiers. Support vector machine had higher accuracy than neural networks.Conclusions: These findings suggest that increasing the number of polygenic score combinations up to approximately 10 effectively improved the discrimination accuracy and that support vector machine exhibited greater accuracy among classifiers. However, the discrimination accuracy for panic disorder, when based solely on polygenic score combinations, was found to be modest.
引用
收藏
页码:603 / 614
页数:12
相关论文
共 65 条
[1]   A global reference for human genetic variation [J].
Altshuler, David M. ;
Durbin, Richard M. ;
Abecasis, Goncalo R. ;
Bentley, David R. ;
Chakravarti, Aravinda ;
Clark, Andrew G. ;
Donnelly, Peter ;
Eichler, Evan E. ;
Flicek, Paul ;
Gabriel, Stacey B. ;
Gibbs, Richard A. ;
Green, Eric D. ;
Hurles, Matthew E. ;
Knoppers, Bartha M. ;
Korbel, Jan O. ;
Lander, Eric S. ;
Lee, Charles ;
Lehrach, Hans ;
Mardis, Elaine R. ;
Marth, Gabor T. ;
McVean, Gil A. ;
Nickerson, Deborah A. ;
Wang, Jun ;
Wilson, Richard K. ;
Boerwinkle, Eric ;
Doddapaneni, Harsha ;
Han, Yi ;
Korchina, Viktoriya ;
Kovar, Christie ;
Lee, Sandra ;
Muzny, Donna ;
Reid, Jeffrey G. ;
Zhu, Yiming ;
Chang, Yuqi ;
Feng, Qiang ;
Fang, Xiaodong ;
Guo, Xiaosen ;
Jian, Min ;
Jiang, Hui ;
Jin, Xin ;
Lan, Tianming ;
Li, Guoqing ;
Li, Jingxiang ;
Li, Yingrui ;
Liu, Shengmao ;
Liu, Xiao ;
Lu, Yao ;
Ma, Xuedi ;
Tang, Meifang ;
Wang, Bo .
NATURE, 2015, 526 (7571) :68-+
[2]   Revealing the complex genetic architecture of obsessive-compulsive disorder using meta-analysis [J].
Arnold, Paul D. ;
Askland, Kathleen D. ;
Barlassina, Cristina ;
Bellodi, Laura ;
Bienvenu, O. J. ;
Black, Donald ;
Bloch, Michael ;
Brentani, Helena ;
Burton, Christie L. ;
Camarena, Beatriz ;
Cappi, Carolina ;
Cath, Danielle ;
Cavallini, Maria ;
Conti, David ;
Cook, Edwin ;
Coric, Vladimir ;
Cullen, Bernadette A. ;
Cusi, Danielle ;
Davis, Lea K. ;
Delorme, Richard ;
Denys, Damiaan ;
Derks, Eske ;
Eapen, Valsamma ;
Edlund, Christopher ;
Erdman, Lauren ;
Falkai, Peter ;
Figee, Martijn ;
Fyer, Abigail J. ;
Geller, Daniel A. ;
Goes, Fernando S. ;
Grabe, Hans ;
Grados, Marcos A. ;
Greenberg, Benjamin D. ;
Grunblatt, Edna ;
Guo, Wei ;
Hanna, Gregory L. ;
Hemmings, Sian ;
Hounie, Ana G. ;
Jenicke, Michael ;
Keenan, Clare ;
Kennedy, James ;
Khramtsova, Ekaterina A. ;
Konkashbaev, Anuar ;
Knowles, James A. ;
Krasnow, Janice ;
Lange, Cristophe ;
Lanzagorta, Nuria ;
Leboyer, Marion ;
Lennertz, Leonhard ;
Li, Bingbin .
MOLECULAR PSYCHIATRY, 2018, 23 (05) :1181-1188
[3]   Genome-wide analysis identifies 12 loci influencing human reproductive behavior [J].
Barban, Nicola ;
Jansen, Rick ;
de Vlaming, Ronald ;
Vaez, Ahmad ;
Mandemakers, Jornt J. ;
Tropf, Felix C. ;
Shen, Xia ;
Wilson, James F. ;
Chasman, Daniel I. ;
Nolte, Illa M. ;
Tragante, Vinicius ;
van der Laan, Sander W. ;
Perry, John R. B. ;
Kong, Augustine ;
Ahluwalia, Tarunveer S. ;
Albrecht, Eva ;
Yerges-Armstrong, Laura ;
Atzmon, Gil ;
Auro, Kirsi ;
Ayers, Kristin ;
Bakshi, Andrew ;
Ben-Avraham, Danny ;
Berger, Klaus ;
Bergman, Aviv ;
Bertram, Lars ;
Bielak, Lawrence F. ;
Bjornsdottir, Gyda ;
Bonder, Marc Jan ;
Broer, Linda ;
Bui, Minh ;
Barbieri, Caterina ;
Cavadino, Alana ;
Chavarro, Jorge E. ;
Turman, Constance ;
Concas, Maria Pina ;
Cordell, Heather J. ;
Davies, Gail ;
Eibich, Peter ;
Eriksson, Nicholas ;
Esko, Tonu ;
Eriksson, Joel ;
Falahi, Fahimeh ;
Felix, Janine F. ;
Fontana, Mark Alan ;
Franke, Lude ;
Gandin, Ilaria ;
Gaskins, Audrey J. ;
Gieger, Christian ;
Gunderson, Erica P. ;
Guo, Xiuqing .
NATURE GENETICS, 2016, 48 (12) :1462-1472
[4]   Childhood intelligence is heritable, highly polygenic and associated with FNBP1L [J].
Benyamin, B. ;
St Pourcain, B. ;
Davis, O. S. ;
Davies, G. ;
Hansell, N. K. ;
Brion, M-J A. ;
Kirkpatrick, R. M. ;
Cents, R. A. M. ;
Franic, S. ;
Miller, M. B. ;
Haworth, C. M. A. ;
Meaburn, E. ;
Price, T. S. ;
Evans, D. M. ;
Timpson, N. ;
Kemp, J. ;
Ring, S. ;
McArdle, W. ;
Medland, S. E. ;
Yang, J. ;
Harris, S. E. ;
Liewald, D. C. ;
Scheet, P. ;
Xiao, X. ;
Hudziak, J. J. ;
de Geus, E. J. C. ;
Jaddoe, V. W. V. ;
Starr, J. M. ;
Verhulst, F. C. ;
Pennell, C. ;
Tiemeier, H. ;
Iacono, W. G. ;
Palmer, L. J. ;
Montgomery, G. W. ;
Martin, N. G. ;
Boomsma, D. I. ;
Posthuma, D. ;
McGue, M. ;
Wright, M. J. ;
Smith, G. Davey ;
Deary, I. J. ;
Plomin, R. ;
Visscher, P. M. .
MOLECULAR PSYCHIATRY, 2014, 19 (02) :253-258
[5]   Sparse whole-genome sequencing identifies two loci for major depressive disorder [J].
Cai, Na ;
Bigdeli, Tim B. ;
Kretzschmar, Warren ;
Li, Yihan ;
Liang, Jieqin ;
Song, Li ;
Hu, Jingchu ;
Li, Qibin ;
Jin, Wei ;
Hu, Zhenfei ;
Wang, Guangbiao ;
Wang, Linmao ;
Qian, Puyi ;
Liu, Yuan ;
Jiang, Tao ;
Lu, Yao ;
Zhang, Xiuqing ;
Yin, Ye ;
Li, Yingrui ;
Xu, Xun ;
Gao, Jingfang ;
Reimers, Mark ;
Webb, Todd ;
Riley, Brien ;
Bacanu, Silviu ;
Peterson, Roseann E. ;
Chen, Yiping ;
Zhong, Hui ;
Liu, Zhengrong ;
Wang, Gang ;
Sun, Jing ;
Sang, Hong ;
Jiang, Guoqing ;
Zhou, Xiaoyan ;
Li, Yi ;
Li, Yi ;
Zhang, Wei ;
Wang, Xueyi ;
Fang, Xiang ;
Pan, Runde ;
Miao, Guodong ;
Zhang, Qiwen ;
Hu, Jian ;
Yu, Fengyu ;
Du, Bo ;
Sang, Wenhua ;
Li, Keqing ;
Chen, Guibing ;
Cai, Min ;
Yang, Lijun .
NATURE, 2015, 523 (7562) :588-+
[6]   Treatment-resistant panic disorder: clinical significance, concept and management [J].
Chen, Mu-Hong ;
Tsai, Shih-Jen .
PROGRESS IN NEURO-PSYCHOPHARMACOLOGY & BIOLOGICAL PSYCHIATRY, 2016, 70 :219-226
[7]   Genome-wide association study of cognitive functions and educational attainment in UK Biobank (N=112151) [J].
Davies, G. ;
Marioni, R. E. ;
Liewald, D. C. ;
Hill, W. D. ;
Hagenaars, S. P. ;
Harris, S. E. ;
Ritchie, S. J. ;
Luciano, M. ;
Fawns-Ritchie, C. ;
Lyall, D. ;
Cullen, B. ;
Cox, S. R. ;
Hayward, C. ;
Porteous, D. J. ;
Evans, J. ;
McIntosh, A. M. ;
Gallacher, J. ;
Craddock, N. ;
Pell, J. P. ;
Smith, D. J. ;
Gale, C. R. ;
Deary, I. J. .
MOLECULAR PSYCHIATRY, 2016, 21 (06) :758-767
[8]   Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function [J].
Davies, Gail ;
Lam, Max ;
Harris, Sarah E. ;
Trampush, Joey W. ;
Luciano, Michelle ;
Hill, W. David ;
Hagenaars, Saskia P. ;
Ritchie, Stuart J. ;
Marioni, Riccardo E. ;
Fawns-Ritchie, Chloe ;
Liewald, David C. M. ;
Okely, Judith A. ;
Ahola-Olli, Ari V. ;
Barnes, Catriona L. K. ;
Bertram, Lars ;
Bis, Joshua C. ;
Burdick, Katherine E. ;
Christoforou, Andrea ;
DeRosse, Pamela ;
Djurovic, Srdjan ;
Espeseth, Thomas ;
Giakoumaki, Stella ;
Giddaluru, Sudheer ;
Gustavson, Daniel E. ;
Hayward, Caroline ;
Hofer, Edith ;
Ikram, M. Arfan ;
Karlsson, Robert ;
Knowles, Emma ;
Lahti, Jari ;
Leber, Markus ;
Li, Shuo ;
Mather, Karen A. ;
Melle, Ingrid ;
Morris, Derek ;
Oldmeadow, Christopher ;
Palviainen, Teemu ;
Payton, Antony ;
Pazoki, Raha ;
Petrovic, Katja ;
Reynolds, Chandra A. ;
Sargurupremraj, Muralidharan ;
Scholz, Markus ;
Smith, Jennifer A. ;
Smith, Albert V. ;
Terzikhan, Natalie ;
Thalamuthu, Anbupalam ;
Trompet, Stella ;
van der Lee, Sven J. ;
Ware, Erin B. .
NATURE COMMUNICATIONS, 2018, 9
[9]   Meta-analysis of Genome-wide Association Studies for Neuroticism, and the Polygenic Association With Major Depressive Disorder [J].
de Moor, Marleen H. M. ;
van den Berg, Stephanie M. ;
Verweij, Karin J. H. ;
Krueger, Robert F. ;
Luciano, Michelle ;
Vasquez, Alejandro Arias ;
Matteson, Lindsay K. ;
Derringer, Jaime ;
Esko, Tonu ;
Amin, Najaf ;
Gordon, Scott D. ;
Hansell, Narelle K. ;
Hart, Amy B. ;
Seppala, Ilkka ;
Huffman, Jennifer E. ;
Konte, Bettina ;
Lahti, Jari ;
Lee, Minyoung ;
Miller, Mike ;
Nutile, Teresa ;
Tanaka, Toshiko ;
Teumer, Alexander ;
Viktorin, Alexander ;
Wedenoja, Juho ;
Abecasis, Goncalo R. ;
Adkins, Daniel E. ;
Agrawal, Arpana ;
Allik, Jueri ;
Appel, Katja ;
Bigdeli, Timothy B. ;
Busonero, Fabio ;
Campbell, Harry ;
Costa, Paul T. ;
Smith, George Davey ;
Davies, Gail ;
de Wit, Harriet ;
Ding, Jun ;
Engelhardt, Barbara E. ;
Eriksson, Johan G. ;
Fedko, Iryna O. ;
Ferrucci, Luigi ;
Franke, Barbara ;
Giegling, Ina ;
Grucza, Richard ;
Hartmann, Annette M. ;
Heath, Andrew C. ;
Heinonen, Kati ;
Henders, Anjali K. ;
Homuth, Georg ;
Hottenga, Jouke-Jan .
JAMA PSYCHIATRY, 2015, 72 (07) :642-650
[10]  
Deary V, 2018, MOL PSYCHIATR, V23, P609, DOI 10.1038/mp.2017.5