Numerical radius inequalities for certain operator matrices

被引:3
作者
Al-Dolat, Mohammed [1 ]
Kittaneh, Fuad [2 ]
机构
[1] Jordan Univ Sci & Technol, Dept Math & Stat, Irbid, Jordan
[2] Univ Jordan, Dept Math, Amman, Jordan
关键词
Numerical radius; Usual operator norm; Operator matrix; Inequality; DRAZIN INVERSE;
D O I
10.1007/s41478-024-00782-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish new upper and lower bounds for the numerical radii of certain operator matrices, which generalize and improve on existing ones. Also, we prove that for an arbitrary operator A is an element of B(H), alpha, beta is an element of (0, 1) and r >= 2 max{alpha, beta, 1 - alpha, 1 - beta}, w(2r)(A) <= min{a, b}, where a = parallel to beta/2 vertical bar A vertical bar(r/beta) + 1 - beta/2 vertical bar A*vertical bar(r/1-beta)parallel to + 1/2 w(r)(A(2)) and b = parallel to alpha(2)vertical bar A vertical bar(r/alpha) + (1 - alpha)(2)vertical bar A*vertical bar(r/1-alpha)parallel to + 2 alpha(1 - alpha)parallel to R(vertical bar A vertical bar(r/2 alpha)vertical bar A*vertical bar(r/2(1-alpha))parallel to. Here w(.) and parallel to.parallel to are the numerical radius and the usual operator norm, respectively. Also, A*, vertical bar A vertical bar and R(A) denote the adjoint, the absolute value and the real part of A, respectively. It is worth to point out here that giving specific values for alpha, beta is an element of (0, 1) gives accurate estimates for the numerical radius.
引用
收藏
页码:2939 / 2951
页数:13
相关论文
共 29 条
  • [1] [Anonymous], 1955, Proc. Cambridge Phil. Soc, DOI 10.1017/S0305004100030401
  • [2] [Anonymous], 1958, Amer. Math. Monthly, DOI [DOI 10.2307/2308576.416, 10.1080/00029890.1958.11991949]
  • [3] On a generalized core inverse
    Baksalary, Oskar Maria
    Trenkler, Goetz
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 236 : 450 - 457
  • [4] Core inverse of matrices
    Baksalary, Oskar Maria
    Trenkler, Goetz
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2010, 58 (06) : 681 - 697
  • [5] Further Results on Weighted Core-EP Inverse of Matrices
    Behera, Ratikanta
    Maharana, Gayatri
    Sahoo, Jajati Keshari
    [J]. RESULTS IN MATHEMATICS, 2020, 75 (04)
  • [6] WEIGHTED INNER INVERSE FOR RECTANGULAR MATRICES
    Behera, Ratikanta
    Mosic, Dijana
    Sahoo, Jajati Kesahri
    Stanimirovic, Predrag S.
    [J]. QUAESTIONES MATHEMATICAE, 2022, 45 (01) : 11 - 39
  • [7] Ben-Israel A., 2003, GEN INVERSES THEORY
  • [8] A characterization of Drazin monotonicity of operators over ordered Banach space
    Bhat, Archana
    Kurmayya, T.
    Selvaraj, R. S.
    [J]. JOURNAL OF ANALYSIS, 2023, 31 (04) : 2371 - 2381
  • [9] ON THE ALGEBRA OF NETWORKS
    BOTT, R
    DUFFIN, RJ
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1953, 74 (JAN) : 99 - 109
  • [10] CHEN YL, 1990, LINEAR ALGEBRA APPL, V134, P71