共 28 条
Molecular-Level Catalytic Reforming Kinetic Model Based on Modified Structure-Oriented Lumping
被引:1
|作者:
Jiang, Zilong
[1
]
Cai, Guangqing
[2
]
Ji, Ye
[2
]
Yang, Lei
[2
]
Chen, Wei
[2
]
Wang, Xinping
[2
]
Li, Qunsheng
[1
]
机构:
[1] Beijing Univ Chem Technol, State Key Lab Chem Resource Engn, Beijing 100029, Peoples R China
[2] PetroChina Planning & Engn Inst, Dept Petrochem Ind, Beijing 100083, Peoples R China
基金:
中国国家自然科学基金;
关键词:
POLYNUCLEAR AROMATIC-HYDROCARBONS;
PARAMETER-ESTIMATION;
REACTION NETWORK;
CRACKING;
NAPHTHA;
SIMULATION;
REACTOR;
HYDROGENATION;
D O I:
10.1021/acs.iecr.3c04531
中图分类号:
TQ [化学工业];
学科分类号:
0817 ;
摘要:
A kinetic model for the catalytic reforming process was developed at the molecular level. The structure-oriented lumping (SOL) method was modified to fit catalytic reforming, and a structural increment was created to distinguish between the xylene isomers; the xylene isomers are important reforming products. To model the governing chemistry, a reaction network involving 140 molecules and 697 reactions was generated in terms of 16 reaction rules. Then, a mathematical model of the naphtha reforming process was developed and included a reaction kinetic model and a reformer reactor model. The linear free energy relation (LFER) method was used to reduce the kinetic parameters. Experiments under different conditions were conducted to optimize the parameters. The results showed that the calculated values of the product yield and molecular composition were in good agreement with the experimental data. The conversion of hydrocarbon molecules was revealed by calculating the distribution of the molecules in the reactor. Sensitivity analysis was performed to investigate the effect of the reaction temperature on the molecular transformations.
引用
收藏
页码:6895 / 6905
页数:11
相关论文