Porosity Prediction Based on Ensemble Learning for Feature Selection and an Optimized GRU Improved by the PSO Algorithm

被引:0
|
作者
Liu, Miaomiao [1 ,2 ]
Xu, Haoran [1 ]
Zhao, Fengda [3 ]
Zhang, Qiang [1 ,2 ]
Jia, Ying [4 ]
Xi, Jiahao [1 ]
机构
[1] Northeast Petr Univ, Sch Comp & Informat Technol, Daqing 163318, Peoples R China
[2] Key Lab Petr Big Data & Intelligent Anal Heilongji, Daqing 163318, Peoples R China
[3] Yanshan Univ, Coll Informat Sci & Engn, Qinhuangdao 066000, Peoples R China
[4] Northeast Petr Univ, Sch Elect & Informat Engn, Daqing 163318, Peoples R China
关键词
GRU; Ensemble learning; PSO; Porosity prediction; Good-point set; Committee voting;
D O I
10.1007/s44196-024-00600-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate and reliable prediction of porosity forms the foundational basis for evaluating reservoir quality, which is essential for the systematic deployment of oil and gas exploration and development plans. When data quality of samples is low, and critical model parameters are typically determined through subjective experience, resulting in diminished accuracy and reliability of porosity prediction methods utilizing gated recurrent units (GRU), a committee-voting ensemble learning (EL) method, and an enhanced particle swarm optimization (PSO) algorithm are proposed to optimize the GRU-based porosity prediction model. Initially, outliers are eliminated through box plots and the min-max normalization is applied to enhance data quality. To address issues related to model accuracy and high training costs arising from dimensional complexity, substantial noise, and redundant information in logging data, a committee-voting EL strategy based on four feature selection algorithms is introduced. Following data preprocessing, this approach is employed to identify logging parameters highly correlated with porosity, thereby furnishing the most pertinent data samples for the GRU model, mitigating constraints imposed by single-feature selection methods. Second, an improved PSO algorithm is suggested to tackle challenges associated with low convergence accuracy stemming from random population initialization, alongside the absence of global optimal solutions due to overly rapid particle movement during iteration. This algorithm uses a good-point set for population initialization and incorporates a compression factor to devise an adaptive velocity updating strategy, thereby enhancing search efficacy. The enhanced PSO algorithm's superiority is substantiated through comparison with four alternative swarm intelligent algorithms across 10 benchmark test functions. Ultimately, optimal hyper-parameters for the GRU model are determined using the improved PSO algorithm, thereby minimizing the influence of human factors. Experimental findings based on approximately 15,000 logging data points from well A01 in an operational field validate that, relative to three other deep learning methodologies, the proposed model proficiently extracts spatiotemporal features from logging data, yielding enhanced accuracy in porosity prediction. The mean squared error on the test set was 7.19 x 10-6, the mean absolute error stood at 0.0082, and coefficient of determination reached 0.99, offering novel insights for predicting reservoir porosity.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Fault Prediction Method for Distribution Network Outage based on Feature Selection and Ensemble Learning
    Zhang, Wen
    Sheng, Wanxing
    Liu, Keyan
    Du, Songhuai
    Jia, Dongli
    Hu, Lijuan
    2018 5TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CONTROL ENGINEERING (ICISCE 2018), 2018, : 226 - 231
  • [22] Deep feature fusion and optimized feature selection based ensemble classification of liver lesions
    Anisha, A.
    Jiji, G.
    Raj, T. Ajith Bosco
    IMAGING SCIENCE JOURNAL, 2023, 71 (06) : 518 - 536
  • [23] A novel ensemble-based wrapper method for feature selection using extreme learning machine and genetic algorithm
    Xue, Xiaowei
    Yao, Min
    Wu, Zhaohui
    KNOWLEDGE AND INFORMATION SYSTEMS, 2018, 57 (02) : 389 - 412
  • [24] An Optimized Neural Network Prediction Model for Reservoir Porosity Based on Improved Shuffled Frog Leaping Algorithm
    Liu, Miaomiao
    Yao, Dan
    Guo, Jingfeng
    Chen, Jing
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2022, 15 (01)
  • [25] An Optimized Neural Network Prediction Model for Reservoir Porosity Based on Improved Shuffled Frog Leaping Algorithm
    Miaomiao Liu
    Dan Yao
    Jingfeng Guo
    Jing Chen
    International Journal of Computational Intelligence Systems, 15
  • [26] Optimized Feature Subset Selection Using Genetic Algorithm for Preterm Labor Prediction Based on Electrohysterography
    Nieto-del-Amor, Felix
    Prats-Boluda, Gema
    Martinez-De-Juan, Jose Luis
    Diaz-Martinez, Alba
    Monfort-Ortiz, Rogelio
    Jose Diago-Almela, Vicente
    Ye-Lin, Yiyao
    SENSORS, 2021, 21 (10)
  • [27] Research on Ensemble Learning-Based Feature Selection Method for Time-Series Prediction
    Huang, Da
    Liu, Zhaoguo
    Wu, Dan
    APPLIED SCIENCES-BASEL, 2024, 14 (01):
  • [28] Ensemble Learning-Based Wind Turbine Fault Prediction Method with Adaptive Feature Selection
    Qin, Shiyao
    Wang, Kaixuan
    Ma, Xiaojing
    Wang, Wenzhuo
    Li, Mei
    DATA SCIENCE, PT II, 2017, 728 : 572 - 582
  • [29] PSO-Based Ensemble Meta-Learning Approach for Cloud Virtual Machine Resource Usage Prediction
    Leka, Habte Lejebo
    Fengli, Zhang
    Kenea, Ayantu Tesfaye
    Hundera, Negalign Wake
    Tohye, Tewodros Gizaw
    Tegene, Abebe Tamrat
    SYMMETRY-BASEL, 2023, 15 (03):
  • [30] Improved Crow Search-Based Feature Selection and Ensemble Learning for IoT Intrusion Detection
    Jayalatchumy, D.
    Ramalingam, Rajakumar
    Balakrishnan, Aravind
    Safran, Mejdl
    Alfarhood, Sultan
    IEEE ACCESS, 2024, 12 : 33218 - 33235