Tail-dependence clustering of time series with spatial constraints

被引:1
作者
Benevento, Alessia [1 ]
Durante, Fabrizio [2 ]
Pappada, Roberta [3 ]
机构
[1] Univ Salento, Dipartimento Sci Econ, Lecce, Italy
[2] Univ Salento, Dipartimento Matemat & Fis Ennio De Giorgi, Lecce, Italy
[3] Univ Trieste, Dipartimento Sci Econom Aziendali Matemat & Stat B, Trieste, Italy
关键词
Copula; Hierarchical clustering; Spatial statistics; Tail dependence; Time series; NONPARAMETRIC-ESTIMATION; MULTIVARIATE; MAXIMA; CLASSIFICATION; CONSTRUCTION;
D O I
10.1007/s10651-024-00626-6
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We introduce a clustering method for time series based on tail dependence. Such a method also considers spatial constraints by means of a suitable procedure merging temporal and spatial dependence via extreme-value copulas. The cluster composition depends on the choice of the hyper-parameter alpha is an element of ( 0 , 1 ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,1)$$\end{document} used to calibrate the contribution of the spatial dependence to the overall dissimilarity. A novel heuristic approach to select alpha \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document} based on a suitable connectedness index associated to each cluster of the partition is proposed.
引用
收藏
页码:801 / 817
页数:17
相关论文
共 66 条
[1]  
[Anonymous], 1981, B INT STAT I P 43 SE
[2]   A spatial analysis of international stock market linkages [J].
Asgharian, Hossein ;
Hess, Wolfgang ;
Liu, Lu .
JOURNAL OF BANKING & FINANCE, 2013, 37 (12) :4738-4754
[3]   Spatial clustering of summer temperature maxima from the CNRM-CM5 climate model ensembles & E-OBS over Europe [J].
Bador, Margot ;
Naveau, Philippe ;
Gilleland, Eric ;
Castella, Merce ;
Arivelo, Tatiana .
WEATHER AND CLIMATE EXTREMES, 2015, 9 :17-24
[4]  
Benevento A., 2023, Book of Short Papers SEAS, P679
[5]   Wasserstein Dissimilarity for Copula-Based Clustering of Time Series with Spatial Information [J].
Benevento, Alessia ;
Durante, Fabrizio .
MATHEMATICS, 2024, 12 (01)
[6]   Correlation-based hierarchical clustering of time series with spatial constraints [J].
Benevento, Alessia ;
Durante, Fabrizio .
SPATIAL STATISTICS, 2024, 59
[7]  
Beranger B, 2023, EXTREMALDEP EXTREMAL
[8]   Clustering of Maxima: Spatial Dependencies among Heavy Rainfall in France [J].
Bernard, Elsa ;
Naveau, Philippe ;
Vrac, Mathieu ;
Mestre, Olivier .
JOURNAL OF CLIMATE, 2013, 26 (20) :7929-7937
[9]   Hierarchical Clustering With Prototypes via Minimax Linkage [J].
Bien, Jacob ;
Tibshirani, Robert .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (495) :1075-1084
[10]  
Bollobas B, 1998, GRAD TEXT M, V184