Machine learning in liver surgery: Benefits and pitfalls

被引:0
作者
Calleja, Rafael [1 ]
Duran, Manuel [1 ]
Ayllon, Maria Dolores [1 ]
Ciria, Ruben [1 ]
Briceno, Javier [1 ]
机构
[1] Hosp Univ Reina Sofia, Maimonides Biomed Res Inst Cordoba, Hepatobiliary Surg & Liver Transplantat Unit, Ave Menendez Pidal S-N, Cordoba 14004, Spain
关键词
Machine learning; Liver surgery; Artificial intelligence; Random forest; Prediction model; ACUTE KIDNEY INJURY; ARTIFICIAL-INTELLIGENCE; RISK-FACTORS;
D O I
10.12998/wjcc.v12.i12.2134
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The application of machine learning (ML) algorithms in various fields of hepatology is an issue of interest. However, we must be cautious with the results. In this letter, based on a published ML prediction model for acute kidney injury after liver surgery, we discuss some limitations of ML models and how they may be addressed in the future. Although the future faces significant challenges, it also holds a great potential.
引用
收藏
页数:5
相关论文
共 15 条
  • [1] Acute renal injury after partial hepatectomy
    Batista Peres, Luis Alberto
    Bredt, Luis Cesar
    Fachini Cipriani, Raphael Flavio
    [J]. WORLD JOURNAL OF HEPATOLOGY, 2016, 8 (21) : 891 - 901
  • [2] Artificial intelligence, machine learning, and deep learning in liver transplantation
    Bhat, Mamatha
    Rabindranath, Madhumitha
    Chara, Beatriz Sordi
    Simonetto, Douglas A.
    [J]. JOURNAL OF HEPATOLOGY, 2023, 78 (06) : 1216 - 1233
  • [3] Artificial intelligence and liver transplantation: Looking for the best donor-recipient pairing
    Briceno, Javier
    Calleja, Rafael
    Hervas, Cesar
    [J]. HEPATOBILIARY & PANCREATIC DISEASES INTERNATIONAL, 2022, 21 (04) : 347 - 353
  • [4] Use of artificial intelligence as an innovative donor-recipient matching model for liver transplantation: Results from a multicenter Spanish study
    Briceno, Javier
    Cruz-Ramirez, Manuel
    Prieto, Martin
    Navasa, Miguel
    Ortiz de Urbina, Jorge
    Orti, Rafael
    Gomez-Bravo, Miguel-Angel
    Otero, Alejandra
    Varo, Evaristo
    Tome, Santiago
    Clemente, Gerardo
    Banares, Rafael
    Barcena, Rafael
    Cuervas-Mons, Valentin
    Solorzano, Guillermo
    Vinaixa, Carmen
    Rubin, Angel
    Colmenero, Jordi
    Valdivieso, Andres
    Ciria, Ruben
    Hervas-Martinez, Cesar
    de la Mata, Manuel
    [J]. JOURNAL OF HEPATOLOGY, 2014, 61 (05) : 1020 - 1028
  • [5] Improved deep convolutional neural networks using chimp optimization algorithm for Covid19 diagnosis from the X-ray images
    Cai, Chengfeng
    Gou, Bingchen
    Khishe, Mohammad
    Mohammadi, Mokhtar
    Rashidi, Shima
    Moradpour, Reza
    Mirjalili, Seyedali
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2023, 213
  • [6] Crossroads in Liver Transplantation: Is Artificial Intelligence the Key to Donor-Recipient Matching?
    Calleja Lozano, Rafael
    Hervas Martinez, Cesar
    Briceno Delgado, Francisco Javier
    [J]. MEDICINA-LITHUANIA, 2022, 58 (12):
  • [7] Validation of artificial neural networks as a methodology for donor-recipient matching for liver transplantation
    Dolores Ayllon, Maria
    Ciria, Ruben
    Cruz-Ramirez, Manuel
    Perez-Ortiz, Maria
    Gomez, Irene
    Valente, Roberto
    O'Grady, John
    de la Mata, Manuel
    Hervas-Martinez, Cesar
    Heaton, Nigel D.
    Briceno, Javier
    [J]. LIVER TRANSPLANTATION, 2018, 24 (02) : 192 - 203
  • [8] Machine learning approach to predict acute kidney injury after liver surgery
    Dong, Jun-Feng
    Xue, Qiang
    Chen, Ting
    Zhao, Yuan-Yu
    Fu, Hong
    Guo, Wen-Yuan
    Ji, Jun-Song
    [J]. WORLD JOURNAL OF CLINICAL CASES, 2021, 9 (36) : 11255 - 11264
  • [9] Statistical methods versus machine learning techniques for donor-recipient matching in liver transplantation
    Guijo-Rubio, David
    Briceno, Javier
    Antonio Gutierrez, Pedro
    Dolores Ayllon, Maria
    Ciria, Ruben
    Hervas-Martinez, Cesar
    [J]. PLOS ONE, 2021, 16 (05):
  • [10] Highly accurate protein structure prediction with AlphaFold
    Jumper, John
    Evans, Richard
    Pritzel, Alexander
    Green, Tim
    Figurnov, Michael
    Ronneberger, Olaf
    Tunyasuvunakool, Kathryn
    Bates, Russ
    Zidek, Augustin
    Potapenko, Anna
    Bridgland, Alex
    Meyer, Clemens
    Kohl, Simon A. A.
    Ballard, Andrew J.
    Cowie, Andrew
    Romera-Paredes, Bernardino
    Nikolov, Stanislav
    Jain, Rishub
    Adler, Jonas
    Back, Trevor
    Petersen, Stig
    Reiman, David
    Clancy, Ellen
    Zielinski, Michal
    Steinegger, Martin
    Pacholska, Michalina
    Berghammer, Tamas
    Bodenstein, Sebastian
    Silver, David
    Vinyals, Oriol
    Senior, Andrew W.
    Kavukcuoglu, Koray
    Kohli, Pushmeet
    Hassabis, Demis
    [J]. NATURE, 2021, 596 (7873) : 583 - +