NOVEL EXPANSION METHOD FOR DERIVING THE NAVIER-STOKES EQUATION FROM THE LATTICE BOLTZMANN EQUATION

被引:0
|
作者
Yamamoto K. [1 ]
机构
[1] Nippon Pillar Packing Co. Ltd., 7-1 Shinmachi 1-chome Nishi-ku, Osaka
关键词
hydrogen; kinetic theory; Lattice Boltzmann method; miscible gas phases; Navier-Stokes equation; second viscosity term; Stefan-Maxwell equations; Stokes hypothesis;
D O I
10.1615/MULTSCIENTECHN.2022043494
中图分类号
学科分类号
摘要
This study proposes a novel expansion method for deriving the Navier-Stokes equation from the lattice Boltzmann equation. This method is used to expand the lattice Boltzmann equation with time step ±t based on the dependence of the distribution function on ±t. It is characterized by obtaining the recurrence relations for ±t that connect the expansion coefficient relationships, considerably reducing the mathematical manipulations required relative to the Chapman-Enskog expansion known for the standard expansion method. Because of its simplicity and clarity, the expansion method is suitable for deriving the lattice Boltzmann equations for complex systems such as multiphase mixtures of miscible gas phases. © 2022 by Begell House, Inc.
引用
收藏
页码:35 / 45
页数:10
相关论文
共 50 条
  • [11] THE NAVIER-STOKES LIMIT OF STATIONARY SOLUTIONS OF THE NONLINEAR BOLTZMANN-EQUATION
    ESPOSITO, R
    LEBOWITZ, JL
    MARRA, R
    JOURNAL OF STATISTICAL PHYSICS, 1995, 78 (1-2) : 389 - 412
  • [12] Asymptotic expansion of the solution of Navier-Stokes equation in a tube structure
    Panasenko, GP
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE ASTRONOMIE, 1998, 326 (12): : 867 - 872
  • [13] Exact solutions to Euler equation and Navier-Stokes equation
    Liu, Mingshuo
    Li, Xinyue
    Zhao, Qiulan
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (02):
  • [14] Discretizations for the incompressible Navier-Stokes equations based on the lattice Boltzmann method
    Junk, M
    Klar, A
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 22 (01) : 1 - 19
  • [15] OBSERVERS FOR COMPRESSIBLE NAVIER-STOKES EQUATION
    Apte, Amit
    Auroux, Didier
    Ramaswamy, Mythily
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2018, 56 (02) : 1081 - 1104
  • [16] The Navier-Stokes equation in noncylindrical domain
    Miranda, MM
    Límaco, J
    COMPUTATIONAL & APPLIED MATHEMATICS, 1997, 16 (03) : 247 - 265
  • [17] Application of Navier-Stokes equation to lubrication
    HONG Yiping
    CHEN Darong
    KONG Xianmei
    WANG Jiadao State Key Laboratory of Tribology
    Science China Mathematics, 2001, (S1) : 58 - 63
  • [18] Navier-Stokes equation with hereditary viscosity
    Barbu, V
    Sritharan, SS
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2003, 54 (03): : 449 - 461
  • [19] Application of Navier-Stokes equation to lubrication
    Hong, YP
    Chen, D
    Kong, XM
    Wang, JD
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2001, 44 : 58 - 63
  • [20] On the control of the Navier-Stokes equation with the extended conjugate gradient method
    Reju, SA
    Ibiejugba, MA
    Evans, DJ
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2000, 76 (01) : 75 - 91