共 29 条
Fault Diagnosis of Hydraulic Components Based on Multi-Sensor Information Fusion Using Improved TSO-CNN-BiLSTM
被引:0
作者:

Zhang, Da
论文数: 0 引用数: 0
h-index: 0
机构:
Qingdao Univ Sci & Technol, Coll Automat & Elect Engn, Qingdao 266061, Peoples R China Qingdao Univ Sci & Technol, Coll Automat & Elect Engn, Qingdao 266061, Peoples R China

Zheng, Kun
论文数: 0 引用数: 0
h-index: 0
机构:
Qingdao Univ Sci & Technol, Coll Automat & Elect Engn, Qingdao 266061, Peoples R China Qingdao Univ Sci & Technol, Coll Automat & Elect Engn, Qingdao 266061, Peoples R China

Liu, Fuqi
论文数: 0 引用数: 0
h-index: 0
机构:
Qingdao Univ Sci & Technol, Coll Automat & Elect Engn, Qingdao 266061, Peoples R China Qingdao Univ Sci & Technol, Coll Automat & Elect Engn, Qingdao 266061, Peoples R China

Li, Beili
论文数: 0 引用数: 0
h-index: 0
机构:
Qingdao Univ Sci & Technol, Coll Automat & Elect Engn, Qingdao 266061, Peoples R China Qingdao Univ Sci & Technol, Coll Automat & Elect Engn, Qingdao 266061, Peoples R China
机构:
[1] Qingdao Univ Sci & Technol, Coll Automat & Elect Engn, Qingdao 266061, Peoples R China
来源:
基金:
中国国家自然科学基金;
关键词:
hydraulic system;
fault diagnosis;
information fusion;
convolutional neural network;
bi-directional long short-term memory network;
tuna swarm optimization;
D O I:
10.3390/s24082661
中图分类号:
O65 [分析化学];
学科分类号:
070302 ;
081704 ;
摘要:
In order to realize the accurate and reliable fault diagnosis of hydraulic systems, a diagnostic model based on improved tuna swarm optimization (ITSO), optimized convolutional neural networks (CNNs), and bi-directional long short-term memory (BiLSTM) networks is proposed. Firstly, sensor selection is implemented using the random forest algorithm to select useful signals from six kinds of physical or virtual sensors including pressure, temperature, flow rate, vibration, motor power, and motor efficiency coefficient. After that, fused features are extracted by CNN, and then, BiLSTM is applied to learn the forward and backward information contained in the data. The ITSO algorithm is adopted to adaptively optimize the learning rate, regularization coefficient, and node number to obtain the optimal CNN-BiLSTM network. Improved Chebyshev chaotic mapping and the nonlinear reduction strategy are adopted to improve population initialization and individual position updating, further promoting the optimization effect of TSO. The experimental results show that the proposed method can automatically extract fusion features and effectively utilize multi-sensor information. The diagnostic accuracies of the plunger pump, cooler, throttle valve, and accumulator are 99.07%, 99.4%, 98.81%, and 98.51%, respectively. The diagnostic results of noisy data with 0 dB, 5 dB, and 10 dB signal-to-noise ratios (SNRs) show that the ITSO-CNN-BiLSTM model has good robustness to noise interference.
引用
收藏
页数:25
相关论文
共 29 条
- [1] High-Throughput Sensor to Detect Hydraulic Oil Contamination Based on Microfluidics[J]. IEEE SENSORS JOURNAL, 2019, 19 (19) : 8590 - 8596Bai, Chenzhao论文数: 0 引用数: 0 h-index: 0机构: Dalian Maritime Univ, Coll Marine Engn, Dalian 116026, Peoples R China Dalian Maritime Univ, Coll Marine Engn, Dalian 116026, Peoples R ChinaZhang, Hongpeng论文数: 0 引用数: 0 h-index: 0机构: Dalian Maritime Univ, Coll Marine Engn, Dalian 116026, Peoples R China Dalian Maritime Univ, Coll Marine Engn, Dalian 116026, Peoples R ChinaZeng, Lin论文数: 0 引用数: 0 h-index: 0机构: Dalian Maritime Univ, Coll Marine Engn, Dalian 116026, Peoples R China Dalian Maritime Univ, Coll Marine Engn, Dalian 116026, Peoples R ChinaZhao, Xupeng论文数: 0 引用数: 0 h-index: 0机构: Dalian Maritime Univ, Coll Marine Engn, Dalian 116026, Peoples R China Dalian Maritime Univ, Coll Marine Engn, Dalian 116026, Peoples R ChinaYu, Zilei论文数: 0 引用数: 0 h-index: 0机构: Dalian Maritime Univ, Coll Marine Engn, Dalian 116026, Peoples R China Dalian Maritime Univ, Coll Marine Engn, Dalian 116026, Peoples R China
- [2] Multisensor Information Fusion for Fault Diagnosis of Axial Piston Pump Based on Improved WPD and SSA-KSTTM[J]. IEEE SENSORS JOURNAL, 2023, 23 (19) : 22998 - 23010Chen, Dong-Ning论文数: 0 引用数: 0 h-index: 0机构: Yanshan Univ, Hebei Prov Key Lab Heavy Machinery Fluid Power Tr, Qinhuangdao 066004, Peoples R China Yanshan Univ, Key Lab Adv Forging & Stamping Technol & Sci, Qinhuangdao 066004, Peoples R China Yanshan Univ, Hebei Prov Key Lab Heavy Machinery Fluid Power Tr, Qinhuangdao 066004, Peoples R ChinaZhou, Zi-Yu论文数: 0 引用数: 0 h-index: 0机构: Yanshan Univ, Hebei Prov Key Lab Heavy Machinery Fluid Power Tr, Qinhuangdao 066004, Peoples R China Yanshan Univ, Key Lab Adv Forging & Stamping Technol & Sci, Qinhuangdao 066004, Peoples R China Yanshan Univ, Hebei Prov Key Lab Heavy Machinery Fluid Power Tr, Qinhuangdao 066004, Peoples R ChinaHu, Dong-Bo论文数: 0 引用数: 0 h-index: 0机构: Yanshan Univ, Hebei Prov Key Lab Heavy Machinery Fluid Power Tr, Qinhuangdao 066004, Peoples R China Yanshan Univ, Key Lab Adv Forging & Stamping Technol & Sci, Qinhuangdao 066004, Peoples R China Yanshan Univ, Hebei Prov Key Lab Heavy Machinery Fluid Power Tr, Qinhuangdao 066004, Peoples R ChinaLiu, Wen-Ping论文数: 0 引用数: 0 h-index: 0机构: Xuzhou Xugong Excavat Machinery Co Ltd, Xuzhou 221000, Peoples R China Yanshan Univ, Hebei Prov Key Lab Heavy Machinery Fluid Power Tr, Qinhuangdao 066004, Peoples R ChinaLiu, Ji-Tao论文数: 0 引用数: 0 h-index: 0机构: Yanshan Univ, Hebei Prov Key Lab Heavy Machinery Fluid Power Tr, Qinhuangdao 066004, Peoples R China Yanshan Univ, Key Lab Adv Forging & Stamping Technol & Sci, Qinhuangdao 066004, Peoples R China Yanshan Univ, Hebei Prov Key Lab Heavy Machinery Fluid Power Tr, Qinhuangdao 066004, Peoples R ChinaChen, Ya-Nan论文数: 0 引用数: 0 h-index: 0机构: Qinglong Cty Power Supply Branch, Qinhuangdao 066500, Hebei, Peoples R China State Grid Jibei Elect Power Co Ltd, Qinhuangdao 066500, Hebei, Peoples R China Yanshan Univ, Hebei Prov Key Lab Heavy Machinery Fluid Power Tr, Qinhuangdao 066004, Peoples R China
- [3] Effective Random Forest-Based Fault Detection and Diagnosis for Wind Energy Conversion Systems[J]. IEEE SENSORS JOURNAL, 2021, 21 (05) : 6914 - 6921Fezai, Radhia论文数: 0 引用数: 0 h-index: 0机构: Natl Engn Sch Monastir, Res Lab Automat Signal Proc & Image, Monastir 5019, Tunisia Natl Engn Sch Monastir, Res Lab Automat Signal Proc & Image, Monastir 5019, TunisiaDhibi, Khaled论文数: 0 引用数: 0 h-index: 0机构: Natl Engn Sch Monastir, Res Lab Automat Signal Proc & Image, Monastir 5019, Tunisia Natl Engn Sch Monastir, Res Lab Automat Signal Proc & Image, Monastir 5019, TunisiaMansouri, Majdi论文数: 0 引用数: 0 h-index: 0机构: Texas A&M Univ Qatar, Dept Elect, Doha 23874, Qatar Texas A&M Univ Qatar, Comp Engn Program, Doha 23874, Qatar Natl Engn Sch Monastir, Res Lab Automat Signal Proc & Image, Monastir 5019, TunisiaTrabelsi, Mohamed论文数: 0 引用数: 0 h-index: 0机构: Kuwait Coll Sci & Technol, Elect & Commun Engn Dept, Kuwait 27235, Kuwait Natl Engn Sch Monastir, Res Lab Automat Signal Proc & Image, Monastir 5019, TunisiaHajji, Mansour论文数: 0 引用数: 0 h-index: 0机构: Univ Kairouan, Higher Inst Appl Sci & Technol Kasserine, Kasserine 1200, Tunisia Natl Engn Sch Monastir, Res Lab Automat Signal Proc & Image, Monastir 5019, TunisiaBouzrara, Kais论文数: 0 引用数: 0 h-index: 0机构: Natl Engn Sch Monastir, Res Lab Automat Signal Proc & Image, Monastir 5019, Tunisia Natl Engn Sch Monastir, Res Lab Automat Signal Proc & Image, Monastir 5019, TunisiaNounou, Hazem论文数: 0 引用数: 0 h-index: 0机构: Texas A&M Univ Qatar, Dept Elect, Doha 23874, Qatar Texas A&M Univ Qatar, Comp Engn Program, Doha 23874, Qatar Natl Engn Sch Monastir, Res Lab Automat Signal Proc & Image, Monastir 5019, TunisiaNounou, Mohamed论文数: 0 引用数: 0 h-index: 0机构: Texas A&M Univ Qatar, Dept Chem Engn Program, Doha 23874, Qatar Natl Engn Sch Monastir, Res Lab Automat Signal Proc & Image, Monastir 5019, Tunisia
- [4] Bearing fault diagnosis based on CNN-BiLSTM and residual module[J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (12)Fu, Guanghua论文数: 0 引用数: 0 h-index: 0机构: Shanghai Maritime Univ, Inst Logist Sci & Engn, Shanghai 201306, Peoples R China Shanghai Maritime Univ, Inst Logist Sci & Engn, Shanghai 201306, Peoples R ChinaWei, Qingjuan论文数: 0 引用数: 0 h-index: 0机构: Shanghai Maritime Univ, Inst Logist Sci & Engn, Shanghai 201306, Peoples R China Shanghai Maritime Univ, Inst Logist Sci & Engn, Shanghai 201306, Peoples R ChinaYang, Yongsheng论文数: 0 引用数: 0 h-index: 0机构: Shanghai Maritime Univ, Inst Logist Sci & Engn, Shanghai 201306, Peoples R China Shanghai Maritime Univ, Inst Logist Sci & Engn, Shanghai 201306, Peoples R ChinaLi, Chaofeng论文数: 0 引用数: 0 h-index: 0机构: Shanghai Maritime Univ, Inst Logist Sci & Engn, Shanghai 201306, Peoples R China Shanghai Maritime Univ, Inst Logist Sci & Engn, Shanghai 201306, Peoples R China
- [5] Intelligent Fault Diagnosis of Hydraulic Multi-Way Valve Using the Improved SECNN-GRU Method with mRMR Feature Selection[J]. SENSORS, 2023, 23 (23)Guan, Hanlin论文数: 0 引用数: 0 h-index: 0机构: Wenzhou Univ, Coll Mech & Elect Engn, Wenzhou 325035, Peoples R China Wenzhou Univ, Coll Mech & Elect Engn, Wenzhou 325035, Peoples R ChinaYan, Ren论文数: 0 引用数: 0 h-index: 0机构: Wenzhou Univ, Coll Mech & Elect Engn, Wenzhou 325035, Peoples R China Wenzhou Univ, Coll Mech & Elect Engn, Wenzhou 325035, Peoples R ChinaTang, Hesheng论文数: 0 引用数: 0 h-index: 0机构: Wenzhou Univ, Coll Mech & Elect Engn, Wenzhou 325035, Peoples R China Wenzhou Univ, Coll Mech & Elect Engn, Wenzhou 325035, Peoples R ChinaXiang, Jiawei论文数: 0 引用数: 0 h-index: 0机构: Wenzhou Univ, Coll Mech & Elect Engn, Wenzhou 325035, Peoples R China Wenzhou Univ, Coll Mech & Elect Engn, Wenzhou 325035, Peoples R China
- [6] Multisensor bearing fault diagnosis based on one-dimensional convolutional long short-term memory networks[J]. MEASUREMENT, 2020, 159Hao, Shijie论文数: 0 引用数: 0 h-index: 0机构: Beijing Normal Univ, Sch Artificial Intelligence, Beijing 100875, Peoples R China Beijing Normal Univ, Sch Artificial Intelligence, Beijing 100875, Peoples R ChinaGe, Feng-Xiang论文数: 0 引用数: 0 h-index: 0机构: Beijing Normal Univ, Sch Artificial Intelligence, Beijing 100875, Peoples R China Beijing Normal Univ, Sch Artificial Intelligence, Beijing 100875, Peoples R ChinaLi, Yanmiao论文数: 0 引用数: 0 h-index: 0机构: Beijing Normal Univ, Sch Artificial Intelligence, Beijing 100875, Peoples R China Beijing Normal Univ, Sch Artificial Intelligence, Beijing 100875, Peoples R ChinaJiang, Jiayu论文数: 0 引用数: 0 h-index: 0机构: Beijing Normal Univ, Sch Artificial Intelligence, Beijing 100875, Peoples R China Beijing Normal Univ, Sch Artificial Intelligence, Beijing 100875, Peoples R China
- [7] Fault Diagnosis of Hydraulic Systems Based on Deep Learning Model With Multirate Data Samples[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (11) : 6789 - 6801Huang, Keke论文数: 0 引用数: 0 h-index: 0机构: Cent South Univ, Sch Automat, Changsha 410083, Peoples R China Cent South Univ, Sch Automat, Changsha 410083, Peoples R ChinaWu, Shujie论文数: 0 引用数: 0 h-index: 0机构: Cent South Univ, Sch Automat, Changsha 410083, Peoples R China Cent South Univ, Sch Automat, Changsha 410083, Peoples R ChinaLi, Fanbiao论文数: 0 引用数: 0 h-index: 0机构: Cent South Univ, Sch Automat, Changsha 410083, Peoples R China Cent South Univ, Sch Automat, Changsha 410083, Peoples R ChinaYang, Chunhua论文数: 0 引用数: 0 h-index: 0机构: Cent South Univ, Sch Automat, Changsha 410083, Peoples R China Cent South Univ, Sch Automat, Changsha 410083, Peoples R ChinaGui, Weihua论文数: 0 引用数: 0 h-index: 0机构: Cent South Univ, Sch Automat, Changsha 410083, Peoples R China Cent South Univ, Sch Automat, Changsha 410083, Peoples R China
- [8] Kalman Filter Assisted Deep Feature Learning for RUL Prediction of Hydraulic Gear Pump[J]. IEEE SENSORS JOURNAL, 2022, 22 (11) : 11088 - 11097Lee, Myeong-Seok论文数: 0 引用数: 0 h-index: 0机构: Kumoh Natl Inst Technol, Gumi 39177, South Korea Kumoh Natl Inst Technol, Gumi 39177, South KoreaShifat, Tanvir Alam论文数: 0 引用数: 0 h-index: 0机构: Kumoh Natl Inst Technol, Gumi 39177, South Korea Kumoh Natl Inst Technol, Gumi 39177, South KoreaHur, Jang-Wook论文数: 0 引用数: 0 h-index: 0机构: Kumoh Natl Inst Technol, Def Reliabil Lab, Gumi 39177, South Korea Kumoh Natl Inst Technol, Gumi 39177, South Korea
- [9] An adaptive data fusion strategy for fault diagnosis based on the convolutional neural network[J]. MEASUREMENT, 2020, 165 (165)Li, Shi论文数: 0 引用数: 0 h-index: 0机构: Beijing Univ Chem Technol, Coll Mech & Elect Engn, Beijing 100029, Peoples R China Beijing Univ Chem Technol, Coll Mech & Elect Engn, Beijing 100029, Peoples R ChinaWang, Huaqing论文数: 0 引用数: 0 h-index: 0机构: Beijing Univ Chem Technol, Coll Mech & Elect Engn, Beijing 100029, Peoples R China Beijing Univ Chem Technol, Coll Mech & Elect Engn, Beijing 100029, Peoples R ChinaSong, Liuyang论文数: 0 引用数: 0 h-index: 0机构: Beijing Univ Chem Technol, Coll Mech & Elect Engn, Beijing 100029, Peoples R China Beijing Univ Chem Technol, Coll Mech & Elect Engn, Beijing 100029, Peoples R ChinaWang, Pengxin论文数: 0 引用数: 0 h-index: 0机构: Beijing Univ Chem Technol, Coll Mech & Elect Engn, Beijing 100029, Peoples R China Beijing Univ Chem Technol, Coll Mech & Elect Engn, Beijing 100029, Peoples R ChinaCui, Lingli论文数: 0 引用数: 0 h-index: 0机构: Beijing Univ Technol, Key Lab Adv Mfg Technol, Beijing 100124, Peoples R China Beijing Univ Chem Technol, Coll Mech & Elect Engn, Beijing 100029, Peoples R ChinaLin, Tianjiao论文数: 0 引用数: 0 h-index: 0机构: Beijing Univ Chem Technol, Coll Mech & Elect Engn, Beijing 100029, Peoples R China Beijing Univ Chem Technol, Coll Mech & Elect Engn, Beijing 100029, Peoples R China
- [10] Hydraulic system fault diagnosis of the chain jacks based on multi-source data fusion[J]. MEASUREMENT, 2023, 217Liu, Yujia论文数: 0 引用数: 0 h-index: 0机构: Dalian Maritime Univ, Marine Engn Coll, Dalian, Peoples R China Dalian Maritime Univ, Natl Ctr Int Res Subsea Engn Technol & Equipment, Dalian, Peoples R China Dalian Maritime Univ, Marine Engn Coll, Dalian, Peoples R ChinaLi, Wenhua论文数: 0 引用数: 0 h-index: 0机构: Dalian Maritime Univ, Marine Engn Coll, Dalian, Peoples R China Dalian Maritime Univ, Natl Ctr Int Res Subsea Engn Technol & Equipment, Dalian, Peoples R China Dalian Maritime Univ, Marine Engn Coll, Dalian, Peoples R ChinaLin, Shanying论文数: 0 引用数: 0 h-index: 0机构: Dalian Maritime Univ, Marine Engn Coll, Dalian, Peoples R China Dalian Maritime Univ, Natl Ctr Int Res Subsea Engn Technol & Equipment, Dalian, Peoples R China Dalian Maritime Univ, Marine Engn Coll, Dalian, Peoples R ChinaZhou, Xingkun论文数: 0 引用数: 0 h-index: 0机构: Dalian Maritime Univ, Marine Engn Coll, Dalian, Peoples R China Dalian Maritime Univ, Natl Ctr Int Res Subsea Engn Technol & Equipment, Dalian, Peoples R China Dalian Maritime Univ, Marine Engn Coll, Dalian, Peoples R ChinaGe, Yangyuan论文数: 0 引用数: 0 h-index: 0机构: Nantong Liwei Machinery Co Ltd, Nantong, Peoples R China Dalian Maritime Univ, Marine Engn Coll, Dalian, Peoples R China