Hybrid semantics-based vulnerability detection incorporating a Temporal Convolutional Network and Self-attention Mechanism

被引:5
作者
Chen, Jinfu [1 ,2 ]
Wang, Weijia [1 ,2 ]
Liu, Bo [1 ,2 ]
Cai, Saihua [1 ,2 ]
Towey, Dave [3 ]
Wang, Shengran [1 ,2 ]
机构
[1] Jiangsu Univ, Sch Comp Sci & Commun Engn, Zhenjiang 212013, Peoples R China
[2] Jiangsu Univ, Jiangsu Key Lab Secur Technol Ind Cyberspace, Zhenjiang 212013, Peoples R China
[3] Univ Nottingham Ningbo China, Sch Comp Sci, Ningbo 315100, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep learning; Software vulnerability detection; Temporal Convolutional Network; Self-attention Mechanism; Source-code picturization; Feature fusion;
D O I
10.1016/j.infsof.2024.107453
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Context: Desirable characteristics in vulnerability -detection (VD) systems (VDSs) include both good detection capability (high accuracy, low false positive rate, low false negative rate, etc.) and low time overheads. The widely used VDSs based on models such as Recurrent Neural Networks (RNNs) have some problems, such as low time efficiency, failing to learn the vulnerability features better, and insufficient amounts of vulnerability features. Therefore, it is very important to construct an automatic detection model with high detection accuracy. Objective: This paper reports on training based on the source code to analyze and learn from the code's patterns and structures by deep -learning techniques to generate an efficient VD model that does not require manual feature design. Method: We propose a software VD model based on multi -feature fusion and deep neural networks called AIdetectorX-SP. It first uses a Temporal Convolutional Network (TCN) and adds a Self -attention Mechanism (SaM) to the TCN to build a model for extracting vulnerability logic features, then transforms the source code into an image input to a Convolutional Neural Network (CNN) to extract structural and semantic information. Finally, we use feature -fusion technology to design and implement an improved deep -learning -based VDS, called AIdetectorX Sequence with Picturization (AIdetectorX-SP). Results: We report on experiments conducted using publicly -available and widely -used datasets to evaluate the effectiveness of AIdetectorX-SP, with results indicating that AIdetectorX-SP is an effective VDS; that the combination of TCN and SaM can effectively extract vulnerability logic features; and that the pictorial code can extract code structure features, which can further improve the VD capability. Conclusion: In this paper, we propose a novel detection model for software vulnerability based on TCNs, SaM, and software picturization. The proposed model solves some shortcomings and limitations of existing VDSs, and obtains a high software -VD accuracy with a high degree of stability.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Identifying cancer driver genes based on multi-view heterogeneous graph convolutional network and self-attention mechanism
    Peng, Wei
    Wu, Rong
    Dai, Wei
    Yu, Ning
    BMC BIOINFORMATICS, 2023, 24 (01)
  • [32] Identifying cancer driver genes based on multi-view heterogeneous graph convolutional network and self-attention mechanism
    Wei Peng
    Rong Wu
    Wei Dai
    Ning Yu
    BMC Bioinformatics, 24
  • [33] Mandarin Recognition Based on Self-Attention Mechanism with Deep Convolutional Neural Network (DCNN)-Gated Recurrent Unit (GRU)
    Chen, Xun
    Wang, Chengqi
    Hu, Chao
    Wang, Qin
    BIG DATA AND COGNITIVE COMPUTING, 2024, 8 (12)
  • [34] Graph convolutional networks with the self-attention mechanism for adaptive influence maximization in social networks
    Tang, Jianxin
    Song, Shihui
    Du, Qian
    Yao, Yabing
    Qu, Jitao
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (06) : 8383 - 8401
  • [35] Depression Detection Based on Hybrid Deep Learning SSCL Framework Using Self-Attention Mechanism: An Application to Social Networking Data
    Nadeem, Aleena
    Naveed, Muhammad
    Satti, Muhammad Islam
    Afzal, Hammad
    Ahmad, Tanveer
    Kim, Ki-Il
    SENSORS, 2022, 22 (24)
  • [36] Keyphrase Generation Based on Self-Attention Mechanism
    Yang, Kehua
    Wang, Yaodong
    Zhang, Wei
    Yao, Jiqing
    Le, Yuquan
    CMC-COMPUTERS MATERIALS & CONTINUA, 2019, 61 (02): : 569 - 581
  • [37] Smart Contract Vulnerability Detection Based on Hybrid Attention Mechanism Model
    Wu, Huaiguang
    Dong, Hanjie
    He, Yaqiong
    Duan, Qianheng
    APPLIED SCIENCES-BASEL, 2023, 13 (02):
  • [38] Long-Tailed Recognition Based on Self-attention Mechanism
    Feng, Zekai
    Jia, Hong
    Li, Mengke
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT II, ICIC 2024, 2024, 14876 : 380 - 391
  • [39] Point cloud upsampling network based on pyramid pooling and self-attention mechanism
    Yang, Xiaoping
    Chen, Fei
    Li, Zhenhua
    Liu, Guanghui
    ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2024, 2024 (01):
  • [40] Rapid nuclide identification algorithm based on self-attention mechanism neural network
    Sun, Jiaqian
    Niu, Deqing
    Liang, Jie
    Hou, Xin
    Li, Linshan
    ANNALS OF NUCLEAR ENERGY, 2024, 207