共 72 条
[41]
Khodapanah B., Awada A., Viering I., Barreto A.N., Simsek M., Fettweis G., Framework for slice-aware radio resource management utilizing artificial neural networks, IEEE Access, 8, pp. 174972-174987, (2020)
[42]
Kim J., Choi J.P., Sensing coverage-based cooperative spectrum detection in cognitive radio networks, IEEE Sens. J., 19, 13, pp. 5325-5332, (2019)
[43]
Marasinghe D., Jayaweera N., Rajatheva N., Latva-Aho M., Hierarchical user clustering for mmWave- NOMA systems, Proc. 2nd 6G Wireless Summit (6G SUMMIT), pp. 1-5, (2020)
[44]
Ravi N., Rani P.V., Shalinie S.M., Secure deep neural (SeDeN) framework for 5G wireless networks, Proc. 10th Int. Conf. Computing, Communication and Networking Technologies (ICCCNT), pp. 1-6, (2019)
[45]
Mazin A., Elkourdi M., Gitlin R.D., Accelerating beam sweeping in mmWave standalone 5G new radios using recurrent neural networks, Proc. IEEE 88th Vehicular Technology Conf. (VTC-Fall), pp. 1-4, (2018)
[46]
Jaraut P., Tripathi G.C., Rawat M., Roblin P., Independent component analysis for multi-carrier transmission for 4G/5G power amplifiers, Proc. 89th ARFTG Microwave Measurement Conf. (ARFTG), pp. 1-4, (2017)
[47]
Zhao Q., Grace D., Vilhar A., Javornik T., Using kmeans clustering with transfer and Q learning for spectrum, load and energy optimization in opportunistic mobile broadband networks, Proc. Int. Symp. on Wireless Communication Systems (ISWCS), pp. 116-120, (2015)
[48]
Huang Q., Kadoch M., 5G resource scheduling for low-latency communication: A reinforcement learning approach, Proc. IEEE 92nd Vehicular Technology Conf. (VTC2020-Fall), pp. 1-5, (2020)
[49]
Luo C., Ji J., Wang Q., Yu L., Li P., Online power control for 5G wireless communications: A deep Qnetwork approach, Proc. IEEE Int. Conf. Communications (ICC), pp. 1-6, (2018)
[50]
Li R., Zhao Z., Sun Q., Chih-Lin I., Yang C., Chen X., Zhao M., Zhang H., Deep reinforcement learning for resource management in network slicing, IEEE Access, 6, pp. 74429-74441, (2018)