Pixel-wise Graph Attention Networks for Person Re-identification

被引:11
作者
Zhang, Wenyu [1 ]
Ding, Qing [1 ]
Hu, Jian [1 ]
Ma, Yi [1 ]
Lu, Mingzhe [1 ]
机构
[1] Univ Sci & Technol China, Hefei, Anhui, Peoples R China
来源
PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021 | 2021年
关键词
graph convolutional networks; graph Generation; self-attention; person re-identification;
D O I
10.1145/3474085.3475640
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph convolutional networks (GCN) is widely used to handle irregular data since it updates node features by using the structure information of graph. With the help of iterated GCN, high-order information can be obtained to further enhance the representation of nodes. However, how to apply GCN to structured data (such as pictures) has not been deeply studied. In this paper, we explore the application of graph attention networks (GAT) in image feature extraction. First of all, we propose a novel graph generation algorithm to convert images into graphs through matrix transformation. It is one magnitude faster than the algorithm based on K Nearest Neighbors (KNN). Then, GAT is used on the generated graph to update the node features. Thus, a more robust representation is obtained. These two steps are combined into a module called pixel-wise graph attention module (PGA). Since the graph obtained by our graph generation algorithm can still be transformed into a picture after processing, PGA can be well combined with CNN. Based on these two modules, we consulted the ResNet and design a pixel-wise graph attention network (PGANet). The PGANet is applied to the task of person re-identification in the datasets Market1501, DukeMTMC-reID and Occluded-DukeMTMC (outperforms state-of-the-art by 0.8%, 1.1% and 11% respectively, in mAP scores). Experiment results show that it achieves the state-of-the-art performance.
引用
收藏
页码:5231 / 5238
页数:8
相关论文
共 42 条
[1]  
Bruna J, 2013, Spectral networks and locally connected networks on graphs, V1312, P6203
[2]   Self-Critical Attention Learning for Person Re-Identification [J].
Chen, Guangyi ;
Lin, Chunze ;
Ren, Liangliang ;
Lu, Jiwen ;
Zhou, Jie .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :9636-9645
[3]   ABD-Net: Attentive but Diverse Person Re-Identification [J].
Chen, Tianlong ;
Ding, Shaojin ;
Xie, Jingyi ;
Yuan, Ye ;
Chen, Wuyang ;
Yang, Yang ;
Ren, Zhou ;
Wang, Zhangyang .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :8350-8360
[4]   Multi-Label Image Recognition with Graph Convolutional Networks [J].
Chen, Zhao-Min ;
Wei, Xiu-Shen ;
Wang, Peng ;
Guo, Yanwen .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :5172-5181
[5]   Batch DropBlock Network for Person Re-identification and Beyond [J].
Dai, Zuozhuo ;
Chen, Mingqiang ;
Gu, Xiaodong ;
Zhu, Siyu ;
Tan, Ping .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :3690-3700
[6]  
Defferrard M, 2016, ADV NEUR IN, V29
[7]   Dual Attention Network for Scene Segmentation [J].
Fu, Jun ;
Liu, Jing ;
Tian, Haijie ;
Li, Yong ;
Bao, Yongjun ;
Fang, Zhiwei ;
Lu, Hanqing .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :3141-3149
[8]  
Fu Y, 2019, AAAI CONF ARTIF INTE, P8295
[9]  
Hamilton WL, 2017, ADV NEUR IN, V30
[10]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778