Harnessing deep learning for forecasting fire-burning locations and unveiling PM2.5 emissions

被引:0
作者
Gaikwad, Sushrut [1 ,2 ]
Kumar, Bipin [1 ]
Yadav, Prafull P. [1 ,5 ]
Ambulkar, Rupal [1 ,7 ]
Govardhan, Gaurav [1 ,6 ]
Kulkarni, Santosh H. [3 ]
Kumar, Rajesh [4 ]
Chate, Dilip M. [3 ]
Nigam, Narendra [1 ]
Rao, Suryachandra A. [1 ]
Ghude, Sachin D. [1 ]
机构
[1] Govt India, Minist Earth Sci, Indian Inst Trop Meterol, Dr Homi Bhabha Rd, Pune 411008, Maharashtra, India
[2] Indian Inst Sci Educ & Res, Dr Homi Bhabha Rd, Pune 411008, Maharashtra, India
[3] Ctr Dev Adv Comp, Panchvati Rd, Pune 411008, Maharashtra, India
[4] Natl Ctr Atmospher Res, Boulder, CO 80301 USA
[5] Savitribai Phule Pune Univ, Dept Atmospher & Space Sci, Pune 411007, Maharashtra, India
[6] Govt India, Minist Earth Sci, Natl Ctr Medium Range Weather Forecasting, A-50,Sect 62, Noida 201309, Uttar Pradesh, India
[7] Savitribai Phule Pune Univ, Dept Environm Sci, Pune 411007, Maharashtra, India
基金
美国国家航空航天局;
关键词
Fire emission; Fire forecasting; Deep learning; ConvLSTM; Air pollution forecasting; MODEL; DELHI;
D O I
10.1007/s40808-023-01831-1
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Climate change and human activity have increased fires in India. Fine particulate matter (PM2.5) is released into the atmosphere by stubble burning in Punjab and Haryana and forest fires in the north-eastern and central areas of the country. Accurate short-term PM2.5 estimates are essential to protect human health and reduce acute air pollution. However, global air quality forecasting methods grapple with a persistent assumption of fire emissions. They use near-real-time fire emissions throughout the prediction cycle. Air quality forecasts are prone to inaccuracies and biases due to fire emissions' dynamic nature. We employ spatiotemporal deep learning techniques, specifically ConvLSTM and ConvGRU, to forecast fire emission locations up to three days in advance. Through our evaluation, we find that ConvLSTM outperforms ConvGRU in terms of prediction accuracy and performance. The chosen model provides a very good correlation coefficient (approximate to 0.8) for the 1st day forecast and a moderate value (0.5-0.55) for subsequent 2nd and 3rd days forecasts. The predictors NDVI, temperature, wind, surface pressure, and total cloud cover are included to our model training to improve these correlations. In Punjab-Haryana, wind input improves results. This fire burning location prediction method could improve air quality forecasting. Our deep learning model can improve forecasts by revealing the complex interactions of components and reflecting fire emissions' dynamic nature. This research may help improve air quality forecasts in the face of rising fire events, protecting communities across the Indian subcontinent.
引用
收藏
页码:927 / 941
页数:15
相关论文
共 39 条
  • [1] Forecasting Crop Residue Fires in Northeastern China Using Machine Learning
    Bai, Bing
    Zhao, Hongmei
    Zhang, Sumei
    Li, Xiaolan
    Zhang, Xuelei
    Xiu, Aijun
    [J]. ATMOSPHERE, 2022, 13 (10)
  • [2] Ballas N., 2016, P 4 INT C LEARN REPR, DOI [10.48550/arXiv.1511.06432, DOI 10.48550/ARXIV.1511.06432]
  • [3] FOREST FIRE SCENARIO AND CHALLENGES OF MITIGATION DURING FIRE SEASON IN NORTH EAST INDIA
    Chakraborty, Kasturi
    Mondal, Partho Protim
    Chabukdhara, Mayuri
    Sudhakar, S.
    [J]. ISPRS TECHNICAL COMMISSION VIII SYMPOSIUM, 2014, 40-8 : 27 - 33
  • [4] Doreswamy, 2020, Procedia Computer Science, V171, P2057, DOI 10.1016/j.procs.2020.04.221
  • [5] Evaluation of PM2.5 forecast using chemical data assimilation in the WRF-Chem model: a novel initiative under the Ministry of Earth Sciences Air Quality Early Warning System for Delhi, India
    Ghude, Sachin D.
    Kumar, Rajesh
    Jena, Chinmay
    Debnath, Sreyashi
    Kulkarni, Rachana G.
    Alessandrini, Stefano
    Biswas, Mrinal
    Kulkrani, Santosh
    Pithani, Prakash
    Kelkar, Saurab
    Sajjan, Veeresh
    Chate, D. M.
    Soni, V. K.
    Singh, Siddhartha
    Nanjundiah, Ravi S.
    Rajeevan, M.
    [J]. CURRENT SCIENCE, 2020, 118 (11): : 1803 - 1815
  • [6] Govardhan G, 2023, GEOSCIENTIFIC MODEL, V2023, P1, DOI [10.5194/gmd-2022-300gmd.copernicus.org/preprints/gmd-2022-300/, DOI 10.5194/GMD-2022-300GMD.COPERNICUS.ORG/PREPRINTS/GMD-2022-300]
  • [7] Augmented Convolutional LSTMs for Generation of High-Resolution Climate Change Projections
    Harilal, Nidhin
    Singh, Mayank
    Bhatia, Udit
    [J]. IEEE ACCESS, 2021, 9 : 25208 - 25218
  • [8] The ERA5 global reanalysis
    Hersbach, Hans
    Bell, Bill
    Berrisford, Paul
    Hirahara, Shoji
    Horanyi, Andras
    Munoz-Sabater, Joaquin
    Nicolas, Julien
    Peubey, Carole
    Radu, Raluca
    Schepers, Dinand
    Simmons, Adrian
    Soci, Cornel
    Abdalla, Saleh
    Abellan, Xavier
    Balsamo, Gianpaolo
    Bechtold, Peter
    Biavati, Gionata
    Bidlot, Jean
    Bonavita, Massimo
    De Chiara, Giovanna
    Dahlgren, Per
    Dee, Dick
    Diamantakis, Michail
    Dragani, Rossana
    Flemming, Johannes
    Forbes, Richard
    Fuentes, Manuel
    Geer, Alan
    Haimberger, Leo
    Healy, Sean
    Hogan, Robin J.
    Holm, Elias
    Janiskova, Marta
    Keeley, Sarah
    Laloyaux, Patrick
    Lopez, Philippe
    Lupu, Cristina
    Radnoti, Gabor
    de Rosnay, Patricia
    Rozum, Iryna
    Vamborg, Freja
    Villaume, Sebastien
    Thepaut, Jean-Noel
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2020, 146 (730) : 1999 - 2049
  • [9] A Deep CNN-LSTM Model for Particulate Matter (PM2.5) Forecasting in Smart Cities
    Huang, Chiou-Jye
    Kuo, Ping-Huan
    [J]. SENSORS, 2018, 18 (07)
  • [10] Performance of high resolution (400 m) PM2.5 forecast over Delhi
    Jena, Chinmay
    Ghude, Sachin D.
    Kumar, Rajesh
    Debnath, Sreyashi
    Govardhan, Gaurav
    Soni, Vijay K.
    Kulkarni, Santosh H.
    Beig, G.
    Nanjundiah, Ravi S.
    Rajeevan, M.
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)