On the convergence of linear and nonlinear Parareal methods for the Cahn-Hilliard equation

被引:0
作者
Garai, Gobinda [1 ]
Mandal, Bankim C. [1 ]
机构
[1] Indian Inst Technol Bhubaneswar, Sch Basic Sci, Bhubaneswar, India
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2024年 / 134卷
关键词
Parallel-in-Time (PinT); Parallel computing; Convergence analysis; Cahn-Hilliard equation; Parareal method; PHASE-FIELD MODEL; ENERGY;
D O I
10.1016/j.cnsns.2024.108014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper introduces, analyses, and implements efficient time parallel methods for solving the Cahn-Hilliard (CH) equation. Efficient numerical methods for the CH equation are crucial due to its wide range of applications. In particular, simulating the CH equation often requires long computational times to obtain the solution during the phase coarsening stage. Therefore, there is a need to accelerate the computations using parallel methods in the time dimension. We propose linear and nonlinear Parareal methods for the CH equation, depending on the choice of the fine approximation. The effectiveness of our approach is demonstrated through numerical experiments.
引用
收藏
页数:20
相关论文
共 31 条
[1]   Parallel-in-time molecular-dynamics simulations -: art. no. 057701 [J].
Baffico, L ;
Bernard, S ;
Maday, Y ;
Turinici, G ;
Zérah, G .
PHYSICAL REVIEW E, 2002, 66 (05) :4-057701
[2]   Inpainting of binary images using the Cahn-Hilliard equation [J].
Bertozzi, Andrea L. ;
Esedoglu, Selim ;
Gillette, Alan .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (01) :285-291
[3]   A Robust Solver for a Mixed Finite Element Method for the Cahn-Hilliard Equation [J].
Brenner, Susanne C. ;
Diegel, Amanda E. ;
Sung, Li-Yeng .
JOURNAL OF SCIENTIFIC COMPUTING, 2018, 77 (02) :1234-1249
[4]   ON SPINODAL DECOMPOSITION [J].
CAHN, JW .
ACTA METALLURGICA, 1961, 9 (09) :795-801
[5]   FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) :258-267
[6]   A GENERALIZED DIFFUSION-MODEL FOR GROWTH AND DISPERSAL IN A POPULATION [J].
COHEN, DS ;
MURRAY, JD .
JOURNAL OF MATHEMATICAL BIOLOGY, 1981, 12 (02) :237-249
[7]   NUMERICAL-ANALYSIS OF A CONTINUUM MODEL OF PHASE-TRANSITION [J].
DU, Q ;
NICOLAIDES, RA .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (05) :1310-1322
[8]   NUMERICAL-STUDIES OF THE CAHN-HILLIARD EQUATION FOR PHASE-SEPARATION [J].
ELLIOTT, CM ;
FRENCH, DA .
IMA JOURNAL OF APPLIED MATHEMATICS, 1987, 38 (02) :97-128
[9]  
ELLIOTT CM, 1986, ARCH RATION MECH AN, V96, P339
[10]  
Eyre D. J., 1998, An unconditionally stable one-step scheme for gradient systems