Dense Hebbian neural networks: A replica symmetric picture of supervised learning

被引:6
作者
Agliari E. [1 ]
Albanese L. [2 ,6 ,7 ]
Alemanno F. [2 ,6 ]
Alessandrelli A. [3 ]
Barra A. [2 ,6 ]
Giannotti F. [4 ,5 ]
Lotito D. [3 ,6 ]
Pedreschi D. [3 ]
机构
[1] Dipartimento di Matematica, Sapienza Università di Roma, Piazzale Aldo Moro, 5, Roma
[2] Dipartimento di Matematica e Fisica, Università del Salento, Via per Arnesano, Lecce
[3] Dipartimento di Informatica, Università di Pisa, Lungarno Antonio Pacinotti, 43, Pisa
[4] Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa
[5] Istituto di Scienza e Tecnologie dell’ Informazione, Via Giuseppe Moruzzi, 1, Pisa
[6] Istituto Nazionale di Fisica Nucleare, Campus Ecotekne, Via Monteroni, Lecce
[7] Scuola Superiore ISUFI, Campus Ecotekne, Via Monteroni, Lecce
关键词
Dense networks; Hebbian learning; Spin glasses;
D O I
10.1016/j.physa.2023.129076
中图分类号
学科分类号
摘要
We consider dense, associative neural-networks trained by a teacher (i.e., with supervision) and we investigate their computational capabilities analytically, via statistical-mechanics tools, and numerically, via Monte Carlo simulations. In particular, we obtain a phase diagram which summarizes their performance as a function of the control parameters (e.g., quality and quantity of the training dataset, network storage, noise), that is valid in the limit of large network-size and structureless datasets. We also numerically test the learning, storing and retrieval capabilities of these networks on structured datasets such as MNist and Fashion MNist. As technical remarks, on the analytic side, we extend Guerra's interpolation to tackle the non-Gaussian distributions involved in the post-synaptic potentials while, on the computational side, we insert Plefka's approximation in the Monte Carlo scheme, to speed up the evaluation of the synaptic tensors, overall obtaining a novel and broad approach to investigate supervised learning in neural networks, beyond the shallow limit. © 2023 Elsevier B.V.
引用
收藏
相关论文
共 62 条
[1]  
Agliari E., Albanese L., Alemanno F., Alessandrelli A., Barra A., Giannotti F., Lotito D., Pedreschi D., Dense hebbian neural networks: a replica symmetric picture of unsupervied learning, (2022)
[2]  
Mezard M., Parisi G., Virasoro M.A., Spin Glass Theory and Beyond: An Introduction to the Replica Method and Its Applications, Vol. 9, (1987)
[3]  
Amit D.J., Modeling Brain Function: The World of Attractor Neural Networks, (1989)
[4]  
Agliari E., Barra A., Sollich P., Zdeborova L., Machine learning and statistical physics: preface, J. Phys. A, 53, (2020)
[5]  
Huang H., Statistical Mechanics of Neural Networks, (2021)
[6]  
Amit D.J., Gutfreund H., Sompolinsky H., Storing infinite numbers of patterns in a spin-glass model of neural networks, Phys. Rev. Lett., 55, pp. 1530-1533, (1985)
[7]  
Agliari E., Alemanno F., Barra A., De Marzo G., The emergence of a concept in shallow neural networks, Neural Netw., 148, pp. 232-253, (2022)
[8]  
Coolen A.C.C., Kuhn R., Sollich P., Theory of Neural Information Processing Systems, (2005)
[9]  
Engel A., Van den Broeck C., Statistical Mechanics of Learning, (2001)
[10]  
Kanter I., Sompolinsky H., Associative recall of memory without errors, Phys. Rev. A, 35.1, (1987)