Role of computed tomography in the diagnosis of solitary pulmonary nodule with solid component: a narrative review

被引:1
作者
Franchi, Paola [1 ]
Procaccini, Luca [2 ]
Mincuzzi, Erica [2 ]
机构
[1] G Mazzini Hosp, Dept Cardiol, Teramo, Italy
[2] Univ G dAnnunzio, Inst Radiol, Dept Neurosci & Imaging & Clin Sci, Sect Diag Imaging & Therapy,Radiol Div, Chieti Pescara, Italy
来源
AME SURGICAL JOURNAL | 2022年 / 2卷
关键词
Lung cancer; computed tomography (CT); solid nodule; partially solid nodule; LUNG-CANCER; PERIFISSURAL NODULES; SOCIETY GUIDELINES; FLEISCHNER-SOCIETY; GROWTH-RATE; CT; MANAGEMENT; PROBABILITY; ALGORITHMS; MORTALITY;
D O I
10.21037/asj-21-52
中图分类号
R61 [外科手术学];
学科分类号
摘要
Objective: The aim of this paper is reviewing the role of computed tomography (CT) in the diagnosis and management of solitary pulmonary nodules (SPNs) with solid component, namely solid and partially solid nodules. Background: The topic is of great interest because the number of pulmonary nodules identified has dramatically raised over time, as a consequence of the increased use of CT in medical care and the diffusion of screening programs. Methods: MEDLINE and PubMed search was conducted from 2000 through June 2021 using as keywords: "lung cancer", "computed tomography", pulmonary nodule", "solid nodule" and "partially solid nodule". Conclusion: Size and growth rate assessed by baseline CT and eventual control are the main determinant for management according to guidelines issued by all thoracic society. Most recent guidelines on this topic are summarized. In addition, CT morphological aspects may help the characterization of a nodule, in terms of benignity/malignancy and therefore suggesting a closer or longer follow-up (FUP) or a more invasive diagnostic procedure. Nowadays and in the near future, artificial intelligence (AI) algorithms have the potential to assist radiologists in the difficult task of detecting but also in diagnosing pulmonary nodules, in terms of lesion's volumetry and characterization. This narrative review provides an overview on the role of CT in the evaluation of SPNs with solid component, mainly based on size and growth rate but also on morphological benign and/or malignant features that a radiologist should recognized in order to allow an early diagnosis and a prompt intervention in case of a malignancy and to avoid unnecessary CT FUP or invasive for nodules.
引用
收藏
页数:10
相关论文
共 51 条
[31]   Decision Making in Patients with Pulmonary Nodules [J].
Ost, David E. ;
Gould, Michael K. .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2012, 185 (04) :363-372
[32]  
Oudkerk M, 2017, LANCET ONCOL, V18, pE754, DOI [10.1016/S1470-2045(17)30861-6, 10.1016/s1470-2045(17)30861-6]
[33]   Mortality, survival and incidence rates in the ITALUNG randomised lung cancer screening trial [J].
Paci, Eugenio ;
Puliti, Donella ;
Pegna, Andrea Lopes ;
Carrozzi, Laura ;
Picozzi, Giulia ;
Falaschi, Fabio ;
Pistelli, Francesco ;
Aquilini, Ferruccio ;
Ocello, Cristina ;
Zappa, Marco ;
Carozzi, Francesca M. ;
Mascalchi, Mario .
THORAX, 2017, 72 (09) :825-831
[34]   Pulmonary nodular ground-glass opacities in patients with extrapulmonary cancers - What is their clinical significance and how can we determine whether they are malignant or benign lesions? [J].
Park, Chang Min ;
Goo, Jin Mo ;
Kim, Tae Jung ;
Lee, Hyun Ju ;
Lee, Kyung Won ;
Lee, Chang Hyun ;
Kim, Young Tae ;
Kim, Kwang Gi ;
Lee, Ho Yun ;
Park, Eun-Ah ;
Im, Jung-Gi .
CHEST, 2008, 133 (06) :1402-1409
[35]   Prolonged lung cancer screening reduced 10-year mortality in the MILD trial: new confirmation of lung cancer screening efficacy [J].
Pastorino, U. ;
Silva, M. ;
Sestini, S. ;
Sabia, F. ;
Boeri, M. ;
Cantarutti, A. ;
Sverzellati, N. ;
Sozzi, G. ;
Corrao, G. ;
Marchiano, A. .
ANNALS OF ONCOLOGY, 2019, 30 (07) :1162-1169
[36]   Are two-dimensional CT measurements of small noncalcified pulmonary nodules reliable? [J].
Revel, MP ;
Bissery, A ;
Bienvenu, M ;
Aycard, L ;
Lefort, C ;
Frija, G .
RADIOLOGY, 2004, 231 (02) :453-458
[37]   Typical CT Features of Intrapulmonary Lymph Nodes: A Review [J].
Schreuder, Anton ;
Jacobs, Colin ;
Scholten, Ernst T. ;
van Ginneken, Bram ;
Schaefer-Prokop, Cornelia M. ;
Prokop, Mathias .
RADIOLOGY-CARDIOTHORACIC IMAGING, 2020, 2 (04)
[38]   Artificial intelligence for detection and characterization of pulmonary nodules in lung cancer CT screening: ready for practice? [J].
Schreuder, Anton ;
Scholten, Ernst T. ;
van Ginneken, Bram ;
Jacobs, Colin .
TRANSLATIONAL LUNG CANCER RESEARCH, 2021, 10 (05) :2378-2388
[39]   Classification of CT Pulmonary Opacities as Perifissural Nodules: Reader Variability [J].
Schreuder, Anton ;
van Ginneken, Bram ;
Scholten, Ernst T. ;
Jacobs, Colin ;
Prokop, Mathias ;
Sverzellati, Nicola ;
Desai, Sujal R. ;
Devaraj, Anand ;
Schaefer-Prokop, Cornelia M. .
RADIOLOGY, 2018, 288 (03) :867-875
[40]   Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge [J].
Setio, Arnaud Arindra Adiyoso ;
Traverso, Alberto ;
de Bel, Thomas ;
Berens, Moira S. N. ;
van den Bogaard, Cas ;
Cerello, Piergiorgio ;
Chen, Hao ;
Dou, Qi ;
Evelina Fantacci, Maria ;
Geurts, Bram ;
van der Gugten, Robbert ;
Heng, Pheng Ann ;
Jansen, Bart ;
de Kaste, Michael M. J. ;
Kotov, Valentin ;
Lin, Jack Yu-Hung ;
Manders, Jeroen T. M. C. ;
Sonora-Mengana, Alexander ;
Carlos Garcia-Naranjo, Juan ;
Papavasileiou, Evgenia ;
Prokop, Mathias ;
Saletta, Marco ;
Schaefer-Prokop, Cornelia M. ;
Scholten, Ernst T. ;
Scholten, Luuk ;
Snoeren, Miranda M. ;
Lopez Torres, Ernesto ;
Vandemeulebroucke, Jef ;
Walasek, Nicole ;
Zuidhof, Guido C. A. ;
van Ginneken, Bram ;
Jacobs, Colin .
MEDICAL IMAGE ANALYSIS, 2017, 42 :1-13