Role of computed tomography in the diagnosis of solitary pulmonary nodule with solid component: a narrative review

被引:1
作者
Franchi, Paola [1 ]
Procaccini, Luca [2 ]
Mincuzzi, Erica [2 ]
机构
[1] G Mazzini Hosp, Dept Cardiol, Teramo, Italy
[2] Univ G dAnnunzio, Inst Radiol, Dept Neurosci & Imaging & Clin Sci, Sect Diag Imaging & Therapy,Radiol Div, Chieti Pescara, Italy
来源
AME SURGICAL JOURNAL | 2022年 / 2卷
关键词
Lung cancer; computed tomography (CT); solid nodule; partially solid nodule; LUNG-CANCER; PERIFISSURAL NODULES; SOCIETY GUIDELINES; FLEISCHNER-SOCIETY; GROWTH-RATE; CT; MANAGEMENT; PROBABILITY; ALGORITHMS; MORTALITY;
D O I
10.21037/asj-21-52
中图分类号
R61 [外科手术学];
学科分类号
摘要
Objective: The aim of this paper is reviewing the role of computed tomography (CT) in the diagnosis and management of solitary pulmonary nodules (SPNs) with solid component, namely solid and partially solid nodules. Background: The topic is of great interest because the number of pulmonary nodules identified has dramatically raised over time, as a consequence of the increased use of CT in medical care and the diffusion of screening programs. Methods: MEDLINE and PubMed search was conducted from 2000 through June 2021 using as keywords: "lung cancer", "computed tomography", pulmonary nodule", "solid nodule" and "partially solid nodule". Conclusion: Size and growth rate assessed by baseline CT and eventual control are the main determinant for management according to guidelines issued by all thoracic society. Most recent guidelines on this topic are summarized. In addition, CT morphological aspects may help the characterization of a nodule, in terms of benignity/malignancy and therefore suggesting a closer or longer follow-up (FUP) or a more invasive diagnostic procedure. Nowadays and in the near future, artificial intelligence (AI) algorithms have the potential to assist radiologists in the difficult task of detecting but also in diagnosing pulmonary nodules, in terms of lesion's volumetry and characterization. This narrative review provides an overview on the role of CT in the evaluation of SPNs with solid component, mainly based on size and growth rate but also on morphological benign and/or malignant features that a radiologist should recognized in order to allow an early diagnosis and a prompt intervention in case of a malignancy and to avoid unnecessary CT FUP or invasive for nodules.
引用
收藏
页数:10
相关论文
共 51 条
[1]   Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening [J].
Aberle, Denise R. ;
Adams, Amanda M. ;
Berg, Christine D. ;
Black, William C. ;
Clapp, Jonathan D. ;
Fagerstrom, Richard M. ;
Gareen, Ilana F. ;
Gatsonis, Constantine ;
Marcus, Pamela M. ;
Sicks, JoRean D. .
NEW ENGLAND JOURNAL OF MEDICINE, 2011, 365 (05) :395-409
[2]   Perifissural Nodules Seen at CT Screening for Lung Cancer [J].
Ahn, Myeong I. ;
Gleeson, Tadhg G. ;
Chan, Ida H. ;
McWilliams, Annette M. ;
MacDonald, Sharyn L. ;
Lam, Stephen ;
Atkar-Khattra, Sukhinder ;
Mayo, John R. .
RADIOLOGY, 2010, 254 (03) :949-956
[3]  
[Anonymous], Cancer
[4]   Recommendations for Measuring Pulmonary Nodules at CT: A Statement from the Fleischner Society [J].
Bankier, Alexander A. ;
MacMahon, Heber ;
Goo, Jin Mo ;
Rubin, Geoffrey D. ;
Schaefer-Prokop, Cornelia M. ;
Naidich, David P. .
RADIOLOGY, 2017, 285 (02) :584-600
[5]   Lung cancer mortality reduction by LDCT screening-Results from the randomized German LUSI trial [J].
Becker, Nikolaus ;
Motsch, Erna ;
Trotter, Anke ;
Heussel, Claus P. ;
Dienemann, Hendrik ;
Schnabel, Philipp A. ;
Kauczor, Hans-Ulrich ;
Maldonado, Sandra Gonzalez ;
Miller, Anthony B. ;
Kaaks, Rudolf ;
Delorme, Stefan .
INTERNATIONAL JOURNAL OF CANCER, 2020, 146 (06) :1503-1513
[6]   Updated Fleischner Society Guidelines for Managing Incidental Pulmonary Nodules: Common Questions and Challenging Scenarios [J].
Bueno, Juliana ;
Landeras, Luis ;
Chung, Jonathan H. .
RADIOGRAPHICS, 2018, 38 (05) :1337-+
[7]   British Thoracic Society guidelines for the investigation and management of pulmonary nodules [J].
Callister, M. E. J. ;
Baldwin, D. R. ;
Akram, A. R. ;
Barnard, S. ;
Cane, P. ;
Draffan, J. ;
Franks, K. ;
Gleeson, F. ;
Graham, R. ;
Malhotra, P. ;
Prokop, M. ;
Rodger, K. ;
Subesinghe, M. ;
Waller, D. ;
Woolhouse, I. .
THORAX, 2015, 70 :1-54
[8]   Deep Learning: A Primer for Radiologists [J].
Chartrand, Gabriel ;
Cheng, Phillip M. ;
Vorontsov, Eugene ;
Drozdzal, Michal ;
Turcotte, Simon ;
Pal, Christopher J. ;
Kadoury, Samuel ;
Tang, An .
RADIOGRAPHICS, 2017, 37 (07) :2113-2131
[9]   Deep learning: definition and perspectives for thoracic imaging [J].
Chassagnon, Guillaume ;
Vakalopolou, Maria ;
Paragios, Nikos ;
Revel, Marie-Pierre .
EUROPEAN RADIOLOGY, 2020, 30 (04) :2021-2030
[10]   Towards automatic pulmonary nodule management in lung cancer screening with deep learning [J].
Ciompi, Francesco ;
Chung, Kaman ;
van Riel, Sarah J. ;
Setio, Arnaud Arindra Adiyoso ;
Gerke, Paul K. ;
Jacobs, Colin ;
Scholten, Ernst Th. ;
Schaefer-Prokop, Cornelia ;
Wille, Mathilde M. W. ;
Marchiano, Alfonso ;
Pastorino, Ugo ;
Prokop, Mathias ;
van Ginneken, Bram .
SCIENTIFIC REPORTS, 2017, 7