VGA-Net: Vessel graph based attentional U-Net for retinal vessel segmentation

被引:3
|
作者
Jalali, Yeganeh [1 ]
Fateh, Mansoor [1 ]
Rezvani, Mohsen [1 ]
机构
[1] Shahrood Univ Technol, Fac Comp Engn, Shahrood, Iran
关键词
biomedical imaging; image processing; image segmentation; medical image processing; NETWORK; IMAGES;
D O I
10.1049/ipr2.13102
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Segmentation is crucial in diagnosing retinal diseases by accurately identifiying retinal vessels. This paper addresses the complexity of segmenting retinal vessels, highlighting the need for precise analysis of blood vessel structures. Despite the progress made by convolutional neural networsks (CNNs) in image segmentation, their limitations in capturing the global structure of retinal vsessels and maintaining segmentation continuity present challenges. To tackle these issues, our proposed network integrates graph convolutional networks (GCNs) and attention mechansims. This allows the model to consider pixel relationships and learn vessel graphical structures, significantly improving segmentation accuracy. Additionally, the attentional feature fusion module, including pixel-wise and channel-wise attention mechansims within the U-Net architecture, refines the model's focus on relevant features. This paper emphasizes the importance of continuty preservation, ensuring an accurate representation of pixel-level information and structural details during sefmentation. Therefore, our method performs as an effective solution to overcome challenges in retinal vessel segmentation. The proposed method outperformed the state-of-the-art approaches on DRIVE (Digital Retinal Images for Vessel Extraction) and STARE (Structed Analysis of the Retina) datasets with accuracies of 0.12% and 0.14%, respecttively. Importantly, our proposed approach excelled in delineating slender and diminutive blood vessels, crucial for diagnosing vascular-related diseases. Implementation is accessible on . This paper tackles the intricate task of segmenting retinal vessels, emphasizing the critical need for accurate analysis of these blood vessel structures. image
引用
收藏
页码:2191 / 2213
页数:23
相关论文
共 50 条
  • [11] MSR U-Net: An Improved U-Net Model for Retinal Blood Vessel Segmentation
    Kande, Giri Babu
    Ravi, Logesh
    Kande, Nitya
    Nalluri, Madhusudana Rao
    Kotb, Hossam
    Aboras, Kareem M.
    Yousef, Amr
    Ghadi, Yazeed Yasin
    Sasikumar, A.
    IEEE Access, 2024, 12 : 534 - 551
  • [12] Retinal Vessel Segmentation with Differentiated U-Net Network
    Arpaci, Saadet Aytac
    Varli, Songul
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [13] Automatic Retinal Vessel Segmentation Based on an Improved U-Net Approach
    Huang, Zihe
    Fang, Ying
    Huang, He
    Xu, Xiaomei
    Wang, Jiwei
    Lai, Xiaobo
    SCIENTIFIC PROGRAMMING, 2021, 2021
  • [14] An improved U-net based retinal vessel image segmentation method
    Ren, Kan
    Chang, Longdan
    Wan, Minjie
    Gu, Guohua
    Chen, Qian
    HELIYON, 2022, 8 (10)
  • [15] A retinal vessel segmentation method based improved U-Net model
    Sun, Kun
    Chen, Yang
    Chao, Yi
    Geng, Jiameng
    Chen, Yinsheng
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 82
  • [16] The study of retinal vessel segmentation based on improved U-net algorithm
    Sheni, Tongping
    Menchita, Dumlao
    2022 IEEE 6TH ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2022, : 518 - 522
  • [17] Retinal blood vessel segmentation based on Densely Connected U-Net
    Cheng, Yinlin
    Ma, Mengnan
    Zhang, Liangjun
    Jin, ChenJin
    Ma, Li
    Zhou, Yi
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2020, 17 (04) : 3088 - 3108
  • [18] Retinal Vessel Segmentation Method Based on Improved U-NET Network
    Chang, Longdan
    Ren, Kan
    Wan, Minjie
    Chen, Qian
    AOPC 2021: NOVEL TECHNOLOGIES AND INSTRUMENTS FOR ASTRONOMICAL MULTI-BAND OBSERVATIONS, 2021, 12069
  • [19] Retinal Vessel Segmentation Method Based on Improved Deep U-Net
    Cai, Yiheng
    Li, Yuanyuan
    Gao, Xurong
    Guo, Yajun
    BIOMETRIC RECOGNITION (CCBR 2019), 2019, 11818 : 321 - 328
  • [20] CHANNEL ATTENTION RESIDUAL U-NET FOR RETINAL VESSEL SEGMENTATION
    Guo, Changlu
    Szemenyei, Marton
    Hu, Yangtao
    Wang, Wenle
    Zhou, Wei
    Yi, Yugen
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 1185 - 1189