NORMALIZED SOLUTIONS FOR THE SCHRODINGER-POISSON SYSTEM WITH DOUBLY CRITICAL GROWTH

被引:9
作者
Meng, Yuxi [1 ]
He, Xiaoming [2 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
[2] Minzu Univ China, Coll Sci, Beijing 100081, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Schrodinger-Poisson system; normalized solutions; variational methods; L-2-subcritical; L-2-supercritical; CONCENTRATION-COMPACTNESS PRINCIPLE; PRESCRIBED NORM; STANDING WAVES; EXISTENCE; EQUATIONS;
D O I
10.12775/TMNA.2022.075
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we are concerned with normalized solutions to the Schrodinger-Poisson system with doubly critical growth {-Delta u = phi|u|(3)u = lambda mu + mu|u|(q - 2)+ |u|(4)u, x is an element of R-3, Delta phi = |u|(5), x is an element of R-3, and prescribed mass integral(R3) |u|(2) dx = a(2), where a > 0 is a constant, mu > 0 is a parameter and 2 < q < 6. In the L-2-subcritical case, we study the multiplicity of normalized solutions by applying the truncation technique, and the genus theory, and in the L2 -supercritical case, we obtain a couple of normalized solutions by developing a fiber map. Under both cases, to recover the loss of compactness of the energy functional caused by the critical growth, we need to adopt the concentration-compactness principle. Our results complement and improve some related studies for the Schrodinger-Poisson system with nonlocal critical term in the literature.
引用
收藏
页码:509 / 534
页数:26
相关论文
共 34 条
[1]  
Alves CO., 2021, arXiv
[2]  
[Anonymous], 1996, Minimax Theorems, Progress in Nonlinear Differential Equations and Their Applications
[3]   Solutions to quasi-relativistic multi-configurative Hartree-Fock equations in quantum chemistry [J].
Argaez, C. ;
Melgaard, M. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (01) :384-404
[4]   On the Schrodinger-Maxwell equations under the effect of a general nonlinear term [J].
Azzollini, A. ;
d'Avenia, P. ;
Pomponio, A. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (02) :779-791
[5]   Generalized Schrodinger-Newton system in dimension N ≥ 3: Critical case [J].
Azzollini, Antonio ;
d'Avenia, Pietro ;
Vaira, Giusi .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 449 (01) :531-552
[6]   Normalized solutions for a coupled Schrodinger system [J].
Bartsch, Thomas ;
Zhong, Xuexiu ;
Zou, Wenming .
MATHEMATISCHE ANNALEN, 2021, 380 (3-4) :1713-1740
[7]   Existence and instability of standing waves with prescribed norm for a class of Schrodinger-Poisson equations [J].
Bellazzini, Jacopo ;
Jeanjean, Louis ;
Luo, Tingjian .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2013, 107 :303-339
[8]   On an exchange interaction model for quantum transport:: The Schrodinger-Poisson-Slater system [J].
Bokanowski, O ;
López, JL ;
Soler, J .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2003, 13 (10) :1397-1412
[9]   CONCENTRATION COMPACTNESS PRINCIPLE AT INFINITY AND SEMILINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL AND SUBCRITICAL SOBOLEV EXPONENTS [J].
CHABROWSKI, J .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1995, 3 (04) :493-512
[10]  
Feng X., 2020, Z. Angew. Math. Phys., V71