Cantilever-enhanced dual-comb photoacoustic spectroscopy

被引:6
作者
Wang, Jiapeng [1 ,2 ]
Wu, Hongpeng [1 ,2 ]
Liu, Xiaoli [1 ,2 ]
Wang, Gang [1 ,2 ]
Wang, Yong [1 ,2 ]
Feng, Chaofan [1 ,2 ]
Cui, Ruyue [1 ,2 ,3 ]
Gong, Zhenfeng [4 ]
Dong, Lei [1 ,2 ]
机构
[1] Shanxi Univ, Inst Laser Spect, State Key Lab Quantum Opt & Quantum Opt Devices, Taiyuan 030006, Peoples R China
[2] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Peoples R China
[3] Univ Littoral Cote dOpale, Lab Physicochim Atmosphere, F-59140 Dunkerque, France
[4] Dalian Univ Technol, Sch Optoelect Esssngineering & Instrumentat Sci, Dalian 116024, Liaoning, Peoples R China
来源
PHOTOACOUSTICS | 2024年 / 38卷
基金
中国国家自然科学基金;
关键词
Photoacoustic spectroscopy; Dual -comb spectroscopy; Optical cantilever; Gas sensing; FREQUENCY COMB;
D O I
10.1016/j.pacs.2024.100605
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Dual-comb photoacoustic spectroscopy (DC-PAS) advances spectral measurements by offering high-sensitivity and compact size in a wavelength-independent manner. Here, we present a novel cantilever-enhanced DC-PAS scheme, employing a high-sensitivity fiber-optic acoustic sensor based on an optical cantilever and a nonresonant photoacoustic cell (PAC) featuring a flat-response characteristic. The dual comb is down-converted to the audio frequency range, and the resulting multiheterodyne sound waves from the photoacoustic effect, are mapped into the response frequency region of the optical cantilever microphone. This cantilever-enhanced DC-PAS method provides advantages such as high sensitivity, compact design, and immunity to electromagnetic interference. Through 10 seconds averaging time, the proposed approach experimentally achieved a minimum detection limit of 860 ppb for acetylene. This technology presents outstanding opportunities for highly sensitive detection of trace gases in a wavelength-independent manner, all within a compact volume.
引用
收藏
页数:8
相关论文
共 43 条
[1]  
[Anonymous], 2005, Femtosecond Optical Frequency Comb: Principle, Operation and Applications
[2]  
Antonio R., 2010, Infrared Detectors
[3]   Precision ultrasound sensing on a chip [J].
Basiri-Esfahani, Sahar ;
Armin, Ardalan ;
Forstner, Stefan ;
Bowen, Warwick P. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[4]   Fiber-optic Fabry-Perot interferometer based high sensitive cantilever microphone [J].
Chen, Ke ;
Gong, Zhenfeng ;
Guo, Min ;
Yu, Shaochen ;
Qu, Chao ;
Zhou, Xinlei ;
Yu, Qingxu .
SENSORS AND ACTUATORS A-PHYSICAL, 2018, 279 :107-112
[5]  
Coddington I, 2016, OPTICA, V3, P414, DOI [10.1364/optica.3.000414, 10.1364/OPTICA.3.000414]
[6]   Colloquium:: Femtosecond optical frequency combs [J].
Cundiff, ST ;
Ye, J .
REVIEWS OF MODERN PHYSICS, 2003, 75 (01) :325-342
[7]   Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb [J].
Diddams, SA ;
Jones, DJ ;
Ye, J ;
Cundiff, ST ;
Hall, JL ;
Ranka, JK ;
Windeler, RS ;
Holzwarth, R ;
Udem, T ;
Hänsch, TW .
PHYSICAL REVIEW LETTERS, 2000, 84 (22) :5102-5105
[8]  
Dumitras DC, 2007, J OPTOELECTRON ADV M, V9, P3655
[9]   Dual-comb photoacoustic spectroscopy [J].
Friedlein, Jacob T. ;
Baumann, Esther ;
Briggman, Kimberly A. ;
Colacion, Gabriel M. ;
Giorgetta, Fabrizio R. ;
Goldfain, Aaron M. ;
Herman, Daniel I. ;
Hoenig, Eli V. ;
Hwang, Jeeseong ;
Newbury, Nathan R. ;
Perez, Edgar F. ;
Yung, Christopher S. ;
Coddington, Ian ;
Cossel, Kevin C. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[10]   Small-volume highly-sensitive all-optical gas sensor using non-resonant photoacoustic spectroscopy with dual silicon cantilever optical microphones [J].
Fu, Lujun ;
Lu, Ping ;
Sima, Chaotan ;
Zhao, Jinbiao ;
Pan, Yufeng ;
Li, Tailin ;
Zhang, Xiaohang ;
Liu, Deming .
PHOTOACOUSTICS, 2022, 27