Machine learning models using symptoms and clinical variables to predict coronary artery disease on coronary angiography

被引:0
作者
Yu, Yangjie [1 ]
Li, Weikai [2 ]
Wu, Jiajia [3 ]
Hua, Xuyun [4 ,5 ]
Jin, Bo [1 ]
Shi, Haiming [1 ]
Chen, Qiying [1 ]
Pan, Junjie [1 ]
机构
[1] Fudan Univ, Huashan Hosp, Dept Cardiol, Shanghai, Peoples R China
[2] Chongqing Jiaotong Univ, Sch Math & Stat, Chongqing, Peoples R China
[3] Shanghai Univ Tradit Chinese Med, Yueyang Hosp Integrated Tradit Chinese & Western M, Ctr Rehabil Med, Shanghai, Peoples R China
[4] Shanghai Univ Tradit Chinese Med, Yueyang Hosp, Dept Traumatol & Orthoped, Shanghai, Peoples R China
[5] Shanghai Univ Tradit Chinese Med, Sch Rehabil Sci, Shanghai, Peoples R China
来源
POSTEPY W KARDIOLOGII INTERWENCYJNEJ | 2024年 / 20卷 / 01期
关键词
coronary artery disease; machine learning; coronary angiography; Electronic Hospital Information System; PRETEST PROBABILITY; DIAGNOSIS;
D O I
10.5114/aic.2024.136416
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Introduction: Coronary angiography (CAG) is invasive and expensive, while numbers of patients suspected of coronary artery disease (CAD) undergoing CAG results have no coronary lesions. Aim: To develop machine learning algorithms using symptoms and clinical variables to predict CAD. Material and methods: This study was conducted as a cross-sectional study of patients undergoing CAG. We randomly chose 2082 patients from 2602 patients suspected of CAD as the training set, and 520 patients as the test set. We utilized LASSO regression to do feature selection. The area under the receiver operating characteristic curve (AUC), confusion matrix of different thresholds, positive predictive value (PPV) and negative predictive value (NPV) were shown. Support vector machine algorithm performances in 10 folds were conducted in the training set for detecting severe CAD, while XGBoost algorithm performances were conducted in the test set for detecting severe CAD. Results: The algorithm of logistic regression achieved an average AUC of 0.77 in the training set during 10-fold validation and an AUC of 0.75 in the test set. When probability predicted by the model was less than 0.1, 11 patients in the test set (520 patients) were screened out, and NPV reached 90.9%. When probability predicted by the model was less than 0.2, 110 patients in the test set were screened out, and reached 83.6%. Meanwhile, when threshold was set to 0.9, PPV reached 97.4%. When the threshold was set to 0.8, PPV reached 91.5%. Conclusions: Machine learning algorithm using data from hospital information systems could assist in severe CAD exclusion and confirmation, and thus help patients avoid unnecessary CAG.
引用
收藏
页码:30 / 36
页数:7
相关论文
共 32 条
[1]   Machine learning of clinical variables and coronary artery calcium scoring for the prediction of obstructive coronary artery disease on coronary computed tomography angiography: analysis from the CONFIRM registry [J].
Al'Arefilb, Subhi J. ;
Maliakal, Gabriel ;
Singh, Gurpreet ;
van Rosendael, Alexander R. ;
Ma, Xiaoyue ;
Xu, Zhuoran ;
Alawamlh, Omar Al Hussein ;
Lee, Benjamin ;
Pandey, Mohit ;
Achenbach, Stephan ;
Al-Mallah, Mouaz H. ;
Andreini, Daniele ;
Bax, Jeroen J. ;
Berman, Daniel S. ;
Budoff, Matthew J. ;
Cademartiri, Filippo ;
Canister, Tracy Q. ;
Chang, Hyuk-Jae ;
Chinnaiyan, Kavitha ;
Chow, Benjamin J. W. ;
Cury, Ricardo C. ;
DeLago, Augustin ;
Feuchtner, Gudrun ;
Hadamitzky, Martin ;
Hausleiter, Joerg ;
Kaufmann, Philipp A. ;
Kim, Yong-Jin ;
Leipsic, Jonathon A. ;
Maffei, Erica ;
Marques, Hugo ;
Goncalves, Pedro de Araujo ;
Pontone, Gianluca ;
Raff, Gilbert L. ;
Rubinshtein, Ronen ;
Villines, Todd C. ;
Gransar, Heidi ;
Lu, Yao ;
Jones, Erica C. ;
Pena, Jessica M. ;
Lin, Fay Y. ;
Min, James K. ;
Shaw, Leslee J. .
EUROPEAN HEART JOURNAL, 2020, 41 (03) :359-367
[2]   Machine learning-based coronary artery disease diagnosis: A comprehensive review [J].
Alizadehsani, Roohallah ;
Abdar, Moloud ;
Roshanzamir, Mohamad ;
Khosravi, Abbas ;
Kebria, Parham M. ;
Khozeimeh, Fahime ;
Nahavandi, Saeid ;
Sarrafzadegan, Nizal ;
Acharya, U. Rajendra .
COMPUTERS IN BIOLOGY AND MEDICINE, 2019, 111
[3]   The year in cardiovascular medicine 2020: digital health and innovation [J].
Antoniades, Charalambos ;
Asselbergs, Folkert W. ;
Vardas, Panos .
EUROPEAN HEART JOURNAL, 2021, 42 (07) :732-739
[4]   Artificial intelligence in cancer imaging: Clinical challenges and applications [J].
Bi, Wenya Linda ;
Hosny, Ahmed ;
Schabath, Matthew B. ;
Giger, Maryellen L. ;
Birkbak, Nicolai J. ;
Mehrtash, Alireza ;
Allison, Tavis ;
Arnaout, Omar ;
Abbosh, Christopher ;
Dunn, Ian F. ;
Mak, Raymond H. ;
Tamimi, Rulla M. ;
Tempany, Clare M. ;
Swanton, Charles ;
Hoffmann, Udo ;
Schwartz, Lawrence H. ;
Gillies, Robert J. ;
Huang, Raymond Y. ;
Aerts, Hugo J. W. L. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2019, 69 (02) :127-157
[5]   European Society of Cardiology-Recommended Coronary Artery Disease Consortium Pretest Probability Scores More Accurately Predict Obstructive Coronary Disease and Cardiovascular Events Than the Diamond and Forrester Score The Partners Registry [J].
Bittencourt, Marcio Sommer ;
Hulten, Edward ;
Polonsky, Tamar S. ;
Hoffman, Udo ;
Nasir, Khurram ;
Abbara, Suhny ;
Di Carli, Marcelo ;
Blankstein, Ron .
CIRCULATION, 2016, 134 (03) :201-+
[6]   Diagnostic Accuracy of a Machine-Learning Approach to Coronary Computed Tomographic Angiography-Based Fractional Flow Reserve Result From the MACHINE Consortium [J].
Coenen, Adriaan ;
Kim, Young-Hak ;
Kruk, Mariusz ;
Tesche, Christian ;
De Geer, Jakob ;
Kurata, Akira ;
Lubbers, Marisa L. ;
Daemen, Joost ;
Itu, Lucian ;
Rapaka, Saikiran ;
Sharma, Puneet ;
Schwemmer, Chris ;
Persson, Anders ;
Schoepf, U. Joseph ;
Kepka, Cezary ;
Yang, Dong Hyun ;
Nieman, Koen .
CIRCULATION-CARDIOVASCULAR IMAGING, 2018, 11 (06)
[7]   Machine Learning in Medicine Will This Time Be Different? [J].
Deo, Rahul C. .
CIRCULATION, 2020, 142 (16) :1521-1523
[8]   Hot topics and trends in cardiovascular research [J].
Gal, Diane ;
Thijs, Bart ;
Glanzel, Wolfgang ;
Sipido, Karin R. .
EUROPEAN HEART JOURNAL, 2019, 40 (28) :2363-2374
[9]   Prediction model to estimate presence of coronary artery disease: retrospective pooled analysis of existing cohorts [J].
Genders, Tessa S. S. ;
Steyerberg, Ewout W. ;
Hunink, M. G. Myriam ;
Nieman, Koen ;
Galema, Tjebbe W. ;
Mollet, Nico R. ;
de Feyter, Pim J. ;
Krestin, Gabriel P. ;
Alkadhi, Hatem ;
Leschka, Sebastian ;
Desbiolles, Lotus ;
Meijs, Matthijs F. L. ;
Cramer, Maarten J. ;
Knuuti, Juhani ;
Kajander, Sami ;
Bogaert, Jan ;
Goetschalckx, Kaatje ;
Cademartiri, Filippo ;
Maffei, Erica ;
Martini, Chiara ;
Seitun, Sara ;
Aldrovandi, Annachiara ;
Wildermuth, Simon ;
Stinn, Bjoern ;
Fornaro, Juergen ;
Feuchtner, Gudrun ;
De Zordo, Tobias ;
Auer, Thomas ;
Plank, Fabian ;
Friedrich, Guy ;
Pugliese, Francesca ;
Petersen, Steffen E. ;
Davies, L. Ceri ;
Schoepf, U. Joseph ;
Rowe, Garrett W. ;
van Mieghem, Carlos A. G. ;
van Driessche, Luc ;
Sinitsyn, Valentin ;
Gopalan, Deepa ;
Nikolaou, Konstantin ;
Bamberg, Fabian ;
Cury, Ricardo C. ;
Battle, Juan ;
Maurovich-Horvat, Pal ;
Bartykowszki, Andrea ;
Merkely, Bela ;
Becker, David ;
Hadamitzky, Martin ;
Hausleiter, Joerg ;
Dewey, Marc .
BMJ-BRITISH MEDICAL JOURNAL, 2012, 344
[10]   A clinical prediction rule for the diagnosis of coronary artery disease: validation, updating, and extension [J].
Genders, Tessa S. S. ;
Steyerberg, Ewout W. ;
Alkadhi, Hatem ;
Leschka, Sebastian ;
Desbiolles, Lotus ;
Nieman, Koen ;
Galema, Tjebbe W. ;
Meijboom, W. Bob ;
Mollet, Nico R. ;
de Feyter, Pim J. ;
Cademartiri, Filippo ;
Maffei, Erica ;
Dewey, Marc ;
Zimmermann, Elke ;
Laule, Michael ;
Pugliese, Francesca ;
Barbagallo, Rossella ;
Sinitsyn, Valentin ;
Bogaert, Jan ;
Goetschalckx, Kaatje ;
Schoepf, U. Joseph ;
Rowe, Garrett W. ;
Schuijf, Joanne D. ;
Bax, Jeroen J. ;
de Graaf, Fleur R. ;
Knuuti, Juhani ;
Kajander, Sami ;
van Mieghem, Carlos A. G. ;
Meijs, Matthijs F. L. ;
Cramer, Maarten J. ;
Gopalan, Deepa ;
Feuchtner, Gudrun ;
Friedrich, Guy ;
Krestin, Gabriel P. ;
Hunink, M. G. Myriam .
EUROPEAN HEART JOURNAL, 2011, 32 (11) :1316-1330