Reentrant Hawking-Page phase transition of charged Gauss-Bonnet-AdS black holes in the grand canonical ensemble

被引:1
作者
Hu, Xiao-yan [1 ]
Cui, Yuan-zhang [1 ]
Xu, Wei [1 ]
机构
[1] China Univ Geosci, Sch Math & Phys, Wuhan 430074, Peoples R China
来源
EUROPEAN PHYSICAL JOURNAL C | 2024年 / 84卷 / 08期
基金
中国国家自然科学基金;
关键词
THERMODYNAMICS; DESITTER; MATTER;
D O I
10.1140/epjc/s10052-024-13163-0
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In this paper, we study the reentrant Hawking-Page transition in the grand canonical ensemble of Gauss-Bonnet AdS spacetime. We find that the four-dimensional Gauss-Bonnet hyperbolic AdS black hole always has a reentrant Hawking-Page transition in the range of electric potential 0<Phi<Phi(tr), accompanied by the appearance of the triple point. However, once the potential exceeds a certain upper limit Phi tr , i.e. Phi>Phi(tr), the Hawking-Page transition disappears. In the spacetime of five and higher dimensional Gauss-Bonnet hyperbolic AdS black hole, the reentrant Hawking-Page transition is solely observed to occur when the electric potential Phi lies between two specific thresholds (Phi(c)<Phi<Phi(tr). In scenarios where the electric potential is below Phi(c) (Phi<Phi(c)), only the standard Hawking-Page transition as in the the Einstein gravity is observed. Similar to the four-dimensional case, the Hawking-Page transition is negated when the electric potential exceeds Phi(tr) (Phi>Phi(tr)). We give the coexistence line, the triple point and critical point of the Hawking-Page transition in the phase diagram of the Gauss-Bonnet hyperbolic AdS black hole. The observed reentrant Hawking-Page transitions and triple points in the context of Gauss-Bonnet hyperbolic AdS black holes may correspond to the phase transitions and triple points in QCD phase diagrams, following the spirit of the AdS/CFT correspondence. To be a complete research, the Hawking-Page transition of d-dimensional charged spherical Gauss-Bonnet-AdS black hole in the grand canonical ensemble is also study in the Appendix, for which there exists a standard Hawking-Page transition with the transition temperature depending on the Gauss-Bonnet constant alpha.
引用
收藏
页数:23
相关论文
共 70 条
  • [1] Generalized Hawking-Page transitions
    Aharony, Ofer
    Urbach, Erez Y.
    Weiss, Maya
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (08)
  • [2] Thermodynamics of Rotating Black Holes and Black Rings: Phase Transitions and Thermodynamic Volume
    Altamirano, Natacha
    Kubiznak, David
    Mann, Robert B.
    Sherkatghanad, Zeinab
    [J]. GALAXIES, 2014, 2 (01): : 89 - 159
  • [3] Reentrant phase transitions in rotating anti-de Sitter black holes
    Altamirano, Natacha
    Kubiznak, David
    Mann, Robert B.
    [J]. PHYSICAL REVIEW D, 2013, 88 (10):
  • [4] Hadron production in ultra-relativistic nuclear collisions: Quarkyonic matter and a triple point in the phase diagram of QCD
    Andronic, A.
    Blaschke, D.
    Braun-Munzinger, P.
    Cleymans, J.
    Fukushima, K.
    McLerran, L. D.
    Oeschler, H.
    Pisarski, R. D.
    Redlich, K.
    Sasaki, C.
    Satz, H.
    Stachel, J.
    [J]. NUCLEAR PHYSICS A, 2010, 837 (1-2) : 65 - 86
  • [5] 4 LAWS OF BLACK HOLE MECHANICS
    BARDEEN, JM
    CARTER, B
    HAWKING, SW
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1973, 31 (02) : 161 - 170
  • [6] BLACK HOLES AND ENTROPY
    BEKENSTEIN, JD
    [J]. PHYSICAL REVIEW D, 1973, 7 (08) : 2333 - 2346
  • [7] STRING-GENERATED GRAVITY MODELS
    BOULWARE, DG
    DESER, S
    [J]. PHYSICAL REVIEW LETTERS, 1985, 55 (24) : 2656 - 2660
  • [8] Gauss-Bonnet black holes in AdS spaces
    Cai, RG
    [J]. PHYSICAL REVIEW D, 2002, 65 (08) : 9
  • [9] P-V criticality in the extended phase space of Gauss-Bonnet black holes in AdS space
    Cai, Rong-Gen
    Cao, Li-Ming
    Li, Li
    Yang, Run-Qiu
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2013, (09):
  • [10] On the universality of inner black hole mechanics and higher curvature gravity
    Castro, Alejandra
    Dehmami, Nima
    Giribet, Gaston
    Kastor, David
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2013, (07):