DEFLECTION-BENDING MOMENT COUPLING NEURAL NETWORK METHOD FOR THE BENDING PROBLEM OF THIN PLATES WITH IN-PLANE STIFFNESS GRADIENT

被引:0
|
作者
Huang, Zhongmin [1 ]
Xie, Zhen [1 ]
Zhang, Yishen [1 ]
Peng, Linxin [1 ,2 ]
机构
[1] School of Civil Engineering and Architecture, Guangxi University, Nanning,530004, China
[2] Key Laboratory of Disaster Prevention and Structural Safety of China Ministry of Education, Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, Guangxi University, Nanning,530004, China
关键词
Bending - Bending problems - Deep learning - Fourth order partial differential equations - In-plane stiffness - Network solutions - Neural network method - Neural-networks - Thin plate - Thin plate with in-plane stiffness gradient;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:2541 / 2553
相关论文
共 42 条
  • [1] Analytical Solution of the Bending Problem for Rectangular Orthotropic Plates with a Variable in-Plane Stiffness
    T. C. Yu
    G. J. Nie
    Z. Zhong
    F. Y. Chu
    X. J. Cao
    Mechanics of Composite Materials, 2021, 57 : 115 - 124
  • [2] Analytical Solution of the Bending Problem for Rectangular Orthotropic Plates with a Variable in-Plane Stiffness
    Yu, T. C.
    Nie, G. J.
    Zhong, Z.
    Chu, F. Y.
    Cao, X. J.
    MECHANICS OF COMPOSITE MATERIALS, 2021, 57 (01) : 115 - 124
  • [3] The Bending-Gradient Theory for Laminates and In-Plane Periodic Plates
    Lebee, Arthur
    Sab, Karam
    SHELL-LIKE STRUCTURES: ADVANCED THEORIES AND APPLICATIONS, 2017, 572 : 113 - 148
  • [4] STOKER PROBLEM FOR THE BENDING OF THIN ELASTIC PLATES WITH SMALL DEFLECTION
    LI, DK
    SCIENTIA SINICA SERIES A-MATHEMATICAL PHYSICAL ASTRONOMICAL & TECHNICAL SCIENCES, 1986, 29 (07): : 772 - 784
  • [5] Bending analysis of functionally graded thick plates with in-plane stiffness variation
    Mazari, Ali
    Attia, Amina
    Sekkal, Mohamed
    Kaci, Abdelhakim
    Tounsi, Abdelouahed
    Bousahla, Abdelmoumen Anis
    Mahmoud, S. R.
    STRUCTURAL ENGINEERING AND MECHANICS, 2018, 68 (04) : 409 - 421
  • [6] STOKER'S PROBLEM FOR THE BENDING OF THIN ELASTIC PLATES WITH SMALL DEFLECTION
    李定坤
    Science China Mathematics, 1986, (07) : 772 - 784
  • [7] Effect of bending stiffness on the in-plane free vibration characteristics of a cable network
    Chen, Wei
    Zhang, Zhuojie
    Zhen, Xiaoxia
    Li, Mingyang
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2020, 34 (11) : 4439 - 4463
  • [8] Effect of bending stiffness on the in-plane free vibration characteristics of a cable network
    Wei Chen
    Zhuojie Zhang
    Xiaoxia Zhen
    Mingyang Li
    Journal of Mechanical Science and Technology, 2020, 34 : 4439 - 4463
  • [9] Bending analysis of thin functionally graded plate under in-plane stiffness variations
    Amirpour, Maedeh
    Das, Raj
    Saavedra Flores, Erick I.
    APPLIED MATHEMATICAL MODELLING, 2017, 44 : 481 - 496
  • [10] An enrichment technique for bending analysis of in-plane heterogeneous thin plates with weak singularities
    Bateniparvar, Omid
    Noormohammadi, Nima
    ENGINEERING WITH COMPUTERS, 2023, 39 (05) : 3131 - 3153