Twin support vector machines based on chaotic mapping dung beetle optimization algorithm

被引:5
作者
Huang, Huajuan [1 ]
Yao, Zhenhua [1 ]
Wei, Xiuxi [1 ,2 ]
Zhou, Yongquan [1 ,3 ]
机构
[1] Guangxi Minzu Univ, Coll Artificial Intelligence, Nanning 530006, Peoples R China
[2] China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Peoples R China
[3] Guangxi Minzu Univ, Guangxi Key Lab Hybrid Computat & IC Design Anal, Nanning 530006, Peoples R China
基金
中国国家自然科学基金;
关键词
twin support vector machines; dung beetle optimization algorithm; parameter selection; chaotic mapping; classification; SVM; CLASSIFICATION;
D O I
10.1093/jcde/qwae040
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Twin Support Vector Machine (TSVM) is a powerful machine learning method that is usually used to solve binary classification problems. But although the classification speed and performance of TSVM is better than that of primitive support vector machine, TSVM still faces the problem of difficult parameter selection; therefore, to overcome the problem of parameter selection of TSVM, this paper proposes a Chaotic Mapping Dung Beetle Optimization Algorithm-based Twin Support Vector Machine (CMDBO-TSVM) for automatic parameter selection. Due to the uncertainty of the random initialization population of the original Dung Beetle Optimization Algorithm, this paper additionally adds chaotic mapping initialization to improve the Dung Beetle Optimization Algorithm. Experiments on the dataset through this paper show that the classification accuracy of the CMDBO-TSVM has a better performance. Graphical Abstract
引用
收藏
页码:101 / 110
页数:10
相关论文
共 50 条
  • [21] Parameter identification of PMSM based on dung beetle optimization algorithm
    Yang, Xiaoliang
    Cui, Yuyue
    Jia, Lianhua
    Sun, Zhihong
    Zhang, Peng
    Zhao, Jiane
    Wang, Rui
    ARCHIVES OF ELECTRICAL ENGINEERING, 2023, 72 (04) : 1055 - 1072
  • [22] Locality preserving twin support vector machines
    Hua, Xiaopeng
    Ding, Shifei
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2014, 51 (03): : 590 - 597
  • [23] Multitask centroid twin support vector machines
    Xie, Xijiong
    Sun, Shiliang
    NEUROCOMPUTING, 2015, 149 : 1085 - 1091
  • [24] Comprehensive review on twin support vector machines
    Tanveer, M.
    Rajani, T.
    Rastogi, R.
    Shao, Y. H.
    Ganaie, M. A.
    ANNALS OF OPERATIONS RESEARCH, 2024, 339 (03) : 1223 - 1268
  • [25] Newton method for implicit Lagrangian twin support vector machines
    Tanveer, M.
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2015, 6 (06) : 1029 - 1040
  • [26] Intuitionistic Fuzzy Twin Support Vector Machines
    Rezvani, Salim
    Wang, Xizhao
    Pourpanah, Farhad
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2019, 27 (11) : 2140 - 2151
  • [27] Multiple Instance Twin Support Vector Machines
    Shao, Yuan-Hai
    Yang, Zhi-Xia
    Wang, Xiao-Bo
    Deng, Nai-Yang
    OPERATIONS RESEARCH AND ITS APPLICATIONS, 2010, 12 : 433 - +
  • [28] Sparse pinball twin support vector machines
    Tanveer, M.
    Tiwari, Aruna
    Choudhary, Rahul
    Jalan, Sanchit
    APPLIED SOFT COMPUTING, 2019, 78 : 164 - 175
  • [29] Robust and Sparse Linear Programming Twin Support Vector Machines
    Tanveer, M.
    COGNITIVE COMPUTATION, 2015, 7 (01) : 137 - 149
  • [30] Large-scale pinball twin support vector machines
    Tanveer, M.
    Tiwari, A.
    Choudhary, R.
    Ganaie, M. A.
    MACHINE LEARNING, 2022, 111 (10) : 3525 - 3548