Twin support vector machines based on chaotic mapping dung beetle optimization algorithm

被引:9
作者
Huang, Huajuan [1 ]
Yao, Zhenhua [1 ]
Wei, Xiuxi [1 ,2 ]
Zhou, Yongquan [1 ,3 ]
机构
[1] Guangxi Minzu Univ, Coll Artificial Intelligence, Nanning 530006, Peoples R China
[2] China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Peoples R China
[3] Guangxi Minzu Univ, Guangxi Key Lab Hybrid Computat & IC Design Anal, Nanning 530006, Peoples R China
基金
中国国家自然科学基金;
关键词
twin support vector machines; dung beetle optimization algorithm; parameter selection; chaotic mapping; classification; SVM; CLASSIFICATION;
D O I
10.1093/jcde/qwae040
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Twin Support Vector Machine (TSVM) is a powerful machine learning method that is usually used to solve binary classification problems. But although the classification speed and performance of TSVM is better than that of primitive support vector machine, TSVM still faces the problem of difficult parameter selection; therefore, to overcome the problem of parameter selection of TSVM, this paper proposes a Chaotic Mapping Dung Beetle Optimization Algorithm-based Twin Support Vector Machine (CMDBO-TSVM) for automatic parameter selection. Due to the uncertainty of the random initialization population of the original Dung Beetle Optimization Algorithm, this paper additionally adds chaotic mapping initialization to improve the Dung Beetle Optimization Algorithm. Experiments on the dataset through this paper show that the classification accuracy of the CMDBO-TSVM has a better performance. Graphical Abstract
引用
收藏
页码:101 / 110
页数:10
相关论文
共 50 条
[21]   Locality preserving twin support vector machines [J].
Hua, Xiaopeng ;
Ding, Shifei .
Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2014, 51 (03) :590-597
[22]   Newton method for implicit Lagrangian twin support vector machines [J].
Tanveer, M. .
INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2015, 6 (06) :1029-1040
[23]   Multitask centroid twin support vector machines [J].
Xie, Xijiong ;
Sun, Shiliang .
NEUROCOMPUTING, 2015, 149 :1085-1091
[24]   Comprehensive review on twin support vector machines [J].
Tanveer, M. ;
Rajani, T. ;
Rastogi, R. ;
Shao, Y. H. ;
Ganaie, M. A. .
ANNALS OF OPERATIONS RESEARCH, 2024, 339 (03) :1223-1268
[25]   Intuitionistic Fuzzy Twin Support Vector Machines [J].
Rezvani, Salim ;
Wang, Xizhao ;
Pourpanah, Farhad .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2019, 27 (11) :2140-2151
[26]   Sparse pinball twin support vector machines [J].
Tanveer, M. ;
Tiwari, Aruna ;
Choudhary, Rahul ;
Jalan, Sanchit .
APPLIED SOFT COMPUTING, 2019, 78 :164-175
[27]   Multiple Instance Twin Support Vector Machines [J].
Shao, Yuan-Hai ;
Yang, Zhi-Xia ;
Wang, Xiao-Bo ;
Deng, Nai-Yang .
OPERATIONS RESEARCH AND ITS APPLICATIONS, 2010, 12 :433-+
[28]   Parameter identification of PMSM based on dung beetle optimization algorithm [J].
Yang, Xiaoliang ;
Cui, Yuyue ;
Jia, Lianhua ;
Sun, Zhihong ;
Zhang, Peng ;
Zhao, Jiane ;
Wang, Rui .
ARCHIVES OF ELECTRICAL ENGINEERING, 2023, 72 (04) :1055-1072
[29]   Robust and Sparse Linear Programming Twin Support Vector Machines [J].
Tanveer, M. .
COGNITIVE COMPUTATION, 2015, 7 (01) :137-149
[30]   Large-scale pinball twin support vector machines [J].
Tanveer, M. ;
Tiwari, A. ;
Choudhary, R. ;
Ganaie, M. A. .
MACHINE LEARNING, 2022, 111 (10) :3525-3548