Research on Small Target Detection Method for Industrial Safety Helmets Based on Improved YOLOv8

被引:1
作者
Yuanshuai L. [1 ]
Mo C. [1 ]
Chuan L. [2 ]
Qian W. [1 ]
Min L. [1 ]
机构
[1] School of Electronic Information Engineering, Geely University, Sichuan, Chengdu
[2] Chengdu College, University of Electronic Science and Technology of China, Sichuan, Chengdu
关键词
safety helmet; Small Target Detection; Target Detection; YOLOv8;
D O I
10.20532/cit.2023.1005754
中图分类号
学科分类号
摘要
Industrial safety helmets are crucial personal protec-tive gear but detecting them as small targets in complex environments is challenging. This work proposes enhancements to the YOLOv8 object detection frame-work, specifically incorporating a spatial-to-depth (SPD) convolution module and a large selective kernel network (LSKNet). SPD-Conv combines spatial-to-depth layers and non-strided convolutions to retain fine-grained information when downscaling feature maps, while LSKNet introduces dynamic spatial selection and attention for refined context modeling. Our customized model is trained on a dataset of construction hardhat images captured via drones. Quantita-tive results showcase higher precision and recall over baseline YOLOv8, surpassing competing YOLOv5 versions. An optimized final model outcomes demonstrate accuracy exceeding 90% validation in mAP metric after 200 training rounds. By tackling limitations posed by small, obscured industrial safety gears, this enhanced real-time detection approach provides indispensable technological support for bolstering workplace hazard identification and prevention. © 2023, University of Zagreb Faculty of Electrical Engineering and Computing. All rights reserved.
引用
收藏
页码:123 / 136
页数:13
相关论文
共 50 条
  • [21] Research on automatic pavement crack identification Based on improved YOLOv8
    Wang, Hongyu
    Han, Xiao
    Song, Xifa
    Su, Jie
    Li, Yang
    Zheng, Wenyan
    Wu, Xuejing
    INTERNATIONAL JOURNAL OF INTERACTIVE DESIGN AND MANUFACTURING - IJIDEM, 2024, 18 (06): : 3773 - 3783
  • [22] Research on Traffic Target Detection Method Based on Improved YOLOv3
    Zhang, Xinyu
    Ding, Sheng
    2021 4TH INTERNATIONAL CONFERENCE ON INTELLIGENT AUTONOMOUS SYSTEMS (ICOIAS 2021), 2021, : 39 - 43
  • [23] Automatic Disease Detection from Strawberry Leaf Based on Improved YOLOv8
    He, Yuelong
    Peng, Yunfeng
    Wei, Chuyong
    Zheng, Yuda
    Yang, Changcai
    Zou, Tengyue
    PLANTS-BASEL, 2024, 13 (18):
  • [24] A lightweight Yunnan Xiaomila detection and pose estimation based on improved YOLOv8
    Wang, Fenghua
    Tang, Yuan
    Gong, Zaipeng
    Jiang, Jin
    Chen, Yu
    Xu, Qiang
    Hu, Peng
    Zhu, Hailong
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [25] An Improved YOLOv8 Target Detection Algorithm and Its Application in Tennis Ball Picking Robot
    Lei, Ruining
    Wu, Yikai
    Ren, Yulong
    Gu, Shenshen
    ADVANCES IN NEURAL NETWORKS-ISNN 2024, 2024, 14827 : 186 - 197
  • [26] YOLOV8-MR: An Improved Lightweight YOLOv8 Algorithm for Tomato Fruit Detection
    Li, Xu
    Cai, Changhan
    Yang, Yue
    Song, Bo
    IEEE ACCESS, 2025, 13 : 48120 - 48131
  • [27] Multi-YOLOv8: An infrared moving small object detection model based on YOLOv8 for air vehicle
    Sun, Shizun
    Mo, Bo
    Xu, Junwei
    Li, Dawei
    Zhao, Jie
    Han, Shuo
    NEUROCOMPUTING, 2024, 588
  • [28] Workers and Safety Helmets Detection in Day and Night Scenes based on improved YOLOv5
    Ma G.
    Jing Y.
    Applied Mathematics and Nonlinear Sciences, 2024, 9 (01)
  • [29] Infrared Image Detection and Recognition of Substation Electrical Equipment Based on Improved YOLOv8
    Tao, Haotian
    Paul, Agyemang
    Wu, Zhefu
    APPLIED SCIENCES-BASEL, 2025, 15 (01):
  • [30] Remote-Sensing Image Object Detection Based on Improved YOLOv8 Algorithm
    Zhang Xiuzai
    Shen Tao
    Xu Dai
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (10)