Hierarchical Attention Transformer for Hyperspectral Image Classification

被引:19
作者
Arshad, Tahir [1 ]
Zhang, Junping [1 ]
机构
[1] Harbin Inst Technol, Sch Elect & Informat Engn, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Convolutional neural network (CNN); hierarchical attention; hyperspectral image (HSI) classification; vision transformer (ViT);
D O I
10.1109/LGRS.2024.3379509
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hyperspectral image (HSI) data contain rich spectral-spatial information, which can be useful for various applications. Many methods have been proposed to classify the HSIs. Nonetheless, the availability of limited training samples in traditional models frequently weakens their ability to handle the inherent complexity of the task. Deep learning models have been successfully applied in the field of remote sensing. In this letter, we propose a vision transformer (ViT)-based network called hierarchical attention transformer that combines the properties of local representation learning in 3-D and 2-D convolutional neural networks (CNNs) and potent global modeling capabilities in ViT. We leverage the efficiency of window-based self-attention. Within each window, there are dedicated tokens that contribute to both local and global representation learning. The overall accuracy (OA) of the proposed model achieved 99.70%, 99.89%, 99.56%, 81.75%, and 99.59% on five datasets.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 19 条
[1]   Transformers in Remote Sensing: A Survey [J].
Aleissaee, Abdulaziz Amer ;
Kumar, Amandeep ;
Anwer, Rao Muhammad ;
Khan, Salman ;
Cholakkal, Hisham ;
Xia, Gui-Song ;
Khan, Fahad Shahbaz .
REMOTE SENSING, 2023, 15 (07)
[2]   Improved nitrogen retrievals with airborne-derived fluorescence and plant traits quantified from VNIR-SWIR hyperspectral imagery in the context of precision agriculture [J].
Camino, Carlos ;
Gonzalez-Dugo, Victoria ;
Hernandez, Pilar ;
Sillero, J. C. ;
Zarco-Tejada, Pablo J. .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2018, 70 :105-117
[3]   Advances in Hyperspectral Image Classification [J].
Camps-Valls, Gustavo ;
Tuia, Devis ;
Bruzzone, Lorenzo ;
Benediktsson, Jon Atli .
IEEE SIGNAL PROCESSING MAGAZINE, 2014, 31 (01) :45-54
[4]   Graph Sample and Aggregate-Attention Network for Hyperspectral Image Classification [J].
Ding, Yao ;
Zhao, Xiaofeng ;
Zhang, Zhili ;
Cai, Wei ;
Yang, Nengjun .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
[5]   Spatial-Spectral Transformer for Hyperspectral Image Classification [J].
He, Xin ;
Chen, Yushi ;
Lin, Zhouhan .
REMOTE SENSING, 2021, 13 (03) :1-22
[6]  
He YX, 2022, IEEE GEOSCI REMOTE S, V19, DOI [10.1109/LGRS.2021.3073819, 10.1109/LGRS.2022.3217775]
[7]   SpectralFormer: Rethinking Hyperspectral Image Classification With Transformers [J].
Hong, Danfeng ;
Han, Zhu ;
Yao, Jing ;
Gao, Lianru ;
Zhang, Bing ;
Plaza, Antonio ;
Chanussot, Jocelyn .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[8]   Multi-granularity vision transformer via semantic token for hyperspectral image classification [J].
Li, Bin ;
Ouyang, Er ;
Hu, Wenjing ;
Zhang, Guoyun ;
Zhao, Lin ;
Wu, Jianhui .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (17) :6538-6560
[9]   A Shallow-to-Deep Feature Fusion Network for VHR Remote Sensing Image Classification [J].
Liu, Sicong ;
Zheng, Yongjie ;
Du, Qian ;
Bruzzone, Lorenzo ;
Samat, Alim ;
Tong, Xiaohua ;
Jin, Yanmin ;
Wang, Chao .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[10]   Swin Transformer: Hierarchical Vision Transformer using Shifted Windows [J].
Liu, Ze ;
Lin, Yutong ;
Cao, Yue ;
Hu, Han ;
Wei, Yixuan ;
Zhang, Zheng ;
Lin, Stephen ;
Guo, Baining .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :9992-10002