Physical Mechanism of Nanocrystalline Composite Deformation Responsible for Fracture Plastic Nature at Cryogenic Temperatures

被引:3
作者
Qiao, Jianyong [1 ]
Ushakov, Ivan Vladimirovich [2 ]
Safronov, Ivan Sergeevich [2 ]
Oshorov, Ayur Dasheevich [2 ]
Wang, Zhiqiang [3 ]
Andrukhova, Olga Vitalievna [2 ]
Rychkova, Olga Vladimirovna [2 ]
机构
[1] China Univ Min & Technol Beijing, Sch Energy & Min Engn, Beijing 100083, Peoples R China
[2] Natl Univ Sci & Technol MISIS, Phys Dept, Moscow 119049, Russia
[3] China Univ Min & Technol Beijing, China Russia Dynam Res Ctr, Beijing 100083, Peoples R China
关键词
nanomaterials; condensed matter physics; nanotechnology; cryogenic temperatures; physical deformation mechanism; TOUGHNESS; ALLOYS;
D O I
10.3390/nano14080723
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this work, we consider the physical basis of deformation and fracture in layered composite nanocrystalline/amorphous material-low-melting crystalline alloy in a wide temperature range. Deformation and fracture at the crack tip on the boundary of such materials as nanocrystalline alloy of the trademark 5BDSR, amorphous alloy of the trademark 82K3XSR and low-melting crystalline alloy were experimentally investigated. The crack was initiated by uniaxial stretching in a temperature range of 77-293 K. A theoretical description of the processes of deformation and fracture at the crack tip is proposed, with the assumption that these processes lead to local heating and ensure the plastic character of crack growth at liquid nitrogen temperatures. The obtained results improve the theoretical understanding of the physics of fracture at the boundary of nanocrystalline and crystalline alloys in a wide temperature range. The possibility of preserving the plastic nature of fracture in a thin boundary layer of crystalline-nanocrystalline material at cryogenic temperatures has been experimentally shown.
引用
收藏
页数:15
相关论文
共 43 条
[1]   Nanocrystal formation in homogeneous and heterogeneous amorphous phases [J].
Abrosimova, G. E. ;
Matveev, D., V ;
Aronin, A. S. .
PHYSICS-USPEKHI, 2022, 65 (03) :227-244
[2]  
[Anonymous], 2015, ISO 6892-3:2015 Metallic Materials-Tensile Testing-Part 3: Method of Test at Low Temperature
[3]  
[Anonymous], 2019, 689212019 ISO
[4]   Nanoscale defect structures at crystal-glass interfaces [J].
Bobylev, SV ;
Ovid'ko, IA ;
Romanov, AE ;
Sheinerman, AG .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2005, 17 (04) :619-634
[5]   Mechanical Properties of Ti3AlC2/Cu Composites Reinforced by MAX Phase Chemical Copper Plating [J].
Chen, Cong ;
Zhai, Zhenjie ;
Sun, Changfei ;
Wang, Zhe ;
Li, Denghui .
NANOMATERIALS, 2024, 14 (05)
[6]   Grain size dependence of twinning behaviors and resultant cryogenic impact toughness in high manganese austenitic steel [J].
Chen, Jun ;
Dong, Fu-tao ;
Liu, Zhen-yu ;
Wang, Guo-dong .
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2021, 10 :175-187
[7]   Metallic Iron or a Fe-Based Glassy Alloy to Reinforce Aluminum: Reactions at the Interface during Spark Plasma Sintering and Mechanical Properties of the Composites [J].
Dudina, Dina V. ;
Kvashnin, Vyacheslav I. ;
Bokhonov, Boris B. ;
Legan, Mikhail A. ;
Novoselov, Aleksey N. ;
Bespalko, Yuliya N. ;
Jorge Jr, Alberto Moreira ;
Koga, Guilherme Y. ;
Ukhina, Arina V. ;
Shtertser, Alexandr A. ;
Anisimov, Alexander G. ;
Georgarakis, Konstantinos .
JOURNAL OF COMPOSITES SCIENCE, 2023, 7 (07)
[8]   Molecular Dynamics Study of Interfacial Micromechanical Behaviors of 6H-SiC/Al Composites under Uniaxial Tensile Deformation [J].
Feng, Kai ;
Wang, Jiefang ;
Hao, Shiming ;
Xie, Jingpei .
NANOMATERIALS, 2023, 13 (03)
[9]   On the theory of nonlinear thermal conductivity [J].
Gladkov, S. O. ;
Bogdanova, S. B. .
TECHNICAL PHYSICS, 2016, 61 (02) :157-164
[10]   Layered Metal Composites with High Resistance to Brittle Fracture at Low Temperatures [J].
Gladkovsky, S. V. ;
Kamantsev, I. S. ;
Kuteneva, S. V. ;
Dvoynikov, D. A. ;
Kuznetsov, A. V. .
MECHANICS, RESOURCE AND DIAGNOSTICS OF MATERIALS AND STRUCTURES (MRDMS-2018), 2018, 2053