Random walks in cones revisited

被引:2
作者
Denisov, Denis [1 ]
Wachtel, Vitali [2 ]
机构
[1] Univ Manchester, Dept Math, Manchester, England
[2] Bielefeld Univ, Fac Math, Bielefeld, Germany
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2024年 / 60卷 / 01期
关键词
Random walk; Exit time; Harmonic function; Conditioned process; EXIT TIMES; POTENTIAL-THEORY; LIMIT-THEOREMS; BROWNIAN-MOTION; GREEN-FUNCTION; INEQUALITIES; BOUNDARY;
D O I
10.1214/22-AIHP1331
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we continue our study of a multidimensional random walk with zero mean and finite variance killed on leaving a cone. We suggest a new approach that allows one to construct a positive harmonic function in Lipschitz cones under minimal moment conditions. This approach allows also to obtain more accurate information about the behaviour of the harmonic function not far from the boundary of the cone. We also prove limit theorems under new moment conditions.
引用
收藏
页码:126 / 166
页数:41
相关论文
共 24 条
[1]  
Azarin V. S., 1966, AMS Transl., V80, P119
[2]   Brownian motion in cones [J].
Banuelos, R ;
Smits, RG .
PROBABILITY THEORY AND RELATED FIELDS, 1997, 108 (03) :299-319
[3]   EXIT TIMES FROM CONES IN RN OF BROWNIAN-MOTION - REMARK [J].
DEBLASSIE, RD .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 79 (01) :95-97
[4]  
Denisov D., 2022, Markov chains in cones
[5]   On the existence of a regularly varying majorant of an integrable monotone function [J].
Denisov, DE .
MATHEMATICAL NOTES, 2006, 79 (1-2) :129-133
[6]  
Denisov D, 2023, Arxiv, DOI arXiv:1612.01592
[7]   Alternative constructions of a harmonic function for a random walk in a cone [J].
Denisov, Denis ;
Wachteli, Vitali .
ELECTRONIC JOURNAL OF PROBABILITY, 2019, 24
[8]   RANDOM WALKS IN CONES [J].
Denisov, Denis ;
Wachtel, Vitali .
ANNALS OF PROBABILITY, 2015, 43 (03) :992-1044
[9]   Exit times for integrated random walks [J].
Denisov, Denis ;
Wachtel, Vitali .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2015, 51 (01) :167-193
[10]   Conditional limit theorems for ordered random walks [J].
Denisov, Denis ;
Wachtel, Vitali .
ELECTRONIC JOURNAL OF PROBABILITY, 2010, 15 :292-322