共 50 条
A DFT study of the adsorption behavior and sensing properties of CO gas on monolayer MoSe2 in CO2-rich environment
被引:3
|作者:
Vinturaj, V. P.
[1
]
Yadav, Ashish Kumar
[1
]
Singh, Rohit
[2
]
Garg, Vivek
[3
]
Bhardwaj, Ritesh
[4
]
Ajith, K. M.
[5
]
Pandey, Sushil Kumar
[1
]
机构:
[1] Natl Inst Technol Karnataka, Dept Elect & Commun Engn, Mangalore 575025, Karnataka, India
[2] Shiv Nadar Inst Eminence, Dept Elect Engn, Delhi Ncr 201314, India
[3] Sardar Vallabhbhai Natl Inst Technol, Dept Elect Engn, Surat 395007, India
[4] LNM Inst Informat Technol, Dept Elect & Commun Engn, Jaipur 302031, Rajasthan, India
[5] Natl Inst Technol Karnataka, Dept Phys, Mangalore 575025, Karnataka, India
关键词:
Density functional theory;
Adsorption energy;
Selectivity;
Sensitivity;
Recovery time;
Conductivity;
STANENE MONOLAYERS;
OZONE MOLECULES;
NANOCOMPOSITES;
PERFORMANCE;
NANOSHEETS;
ZNO;
D O I:
10.1007/s00894-024-06014-y
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Carbon monoxide, also known as the "silent killer," is a colorless, odorless, tasteless, and non-irritable gas that, when inhaled, enters the bloodstream and lungs, binds with the hemoglobin, and blocks oxygen from reaching tissues and cells. In this work, the monolayer MoSe2-based CO gas sensors were designed using density functional theory calculation with several dopants including Al, Au, Pd, Ni, Cu, and P. Here, Cu and P were found to be the best dopants, with adsorption energies of -0.67 eV (Cu) and -0.54 eV (P) and recovery times of 1.66 s and 13.8 ms respectively. Cu conductivity for CO adsorption was found to be 2.74 times that of CO2 adsorption in the 1.0-2.26 eV range. P displayed the highest selectivity, followed by Pd and Ni. The dopants, Pd and Ni, were found suitable for building CO gas scavengers due to their high recovery times of 9.76 x 10(20) s and 2.47 x 10(11) s. Similarly, the adsorption of CO2 on doped monolayer MoSe2 was also investigated. In this study, it is found that monolayer MoSe2 could be employed to create high-performance CO sensors in a CO2-rich environment.
引用
收藏
页数:14
相关论文