A Generalized Stochastic Approximation for the Recursive System Identification

被引:0
作者
Chernyshov, Kirill R. [1 ]
机构
[1] Russian Acad Sci, VA Trapeznikov Inst Control Sci, Moscow, Russia
来源
IFAC PAPERSONLINE | 2023年 / 56卷 / 02期
关键词
system identification; input/output model; recursive estimation; color disturbances; instrumental variables; Hessian condition number; IN-VARIABLES IDENTIFICATION; ALGORITHM; LOOP;
D O I
10.1016/j.ifacol.2023.10.1183
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents an approach for constructing probabilistic approximation type algorithms used in system identification systems. The proposed approach allows obtaining recursive identification algorithms under fairly mild assumptions about noise and disturbances that distort the system. The obtained algorithm does not require inversion of the Hessian of the identification criterion and is robust to changes in the order of the Hessian. This example demonstrates good convergence properties of the obtained algorithm compared to conventional recursive systems. Copyright (c) 2023 The Authors.
引用
收藏
页码:7765 / +
页数:9
相关论文
共 19 条
[1]   An improved instrumental variable method for industrial robot model identification [J].
Brunot, M. ;
Janot, A. ;
Young, P. C. ;
Carrillo, F. .
CONTROL ENGINEERING PRACTICE, 2018, 74 :107-117
[2]   Errors-in-variables identification in dynamic networks - Consistency results for an instrumental variable approach [J].
Dankers, Arne ;
Van den Hof, Paul M. J. ;
Bombois, Xavier ;
Heuberger, Peter S. C. .
AUTOMATICA, 2015, 62 :39-50
[3]   Recursive total instrumental-variable algorithm for solving over-determined normal equations and its applications [J].
Feng, Da-Zheng ;
Zheng, Wei Xing .
SIGNAL PROCESSING, 2007, 87 (05) :918-936
[4]   Recursive identification of multivariable ARX models in the presence of a priori information: Robustness and regularization [J].
Filipovic, Vojislav Z. .
SIGNAL PROCESSING, 2015, 116 :68-77
[5]   STRONGLY CONSISTENT PARAMETER ESTIMATION BY INTRODUCTION OF STRONG INSTRUMENTAL VARIABLES [J].
FINIGAN, BM ;
ROWE, IH .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :825-831
[6]   Recursive identification of time-varying systems: Self-tuning and matrix RLS algorithms [J].
Li, Jianshu ;
Zheng, Yuanjin ;
Lin, Zhiping .
SYSTEMS & CONTROL LETTERS, 2014, 66 :104-110
[7]   Prediction error estimation methods [J].
Ljung, L .
CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2002, 21 (01) :11-21
[8]  
Ljung L., 1999, PTR Prentice-Hall Information and System Science Series
[9]   Convergence analysis of instrumental variable recursive subspace identification algorithms [J].
Mercere, Guillaume ;
Lovera, Marco .
AUTOMATICA, 2007, 43 (08) :1377-1386
[10]  
Sderstrm T, 1984, IFAC Proceedings, P603