Linear immersions (or Koopman eigenmappings) of a nonlinear system have wide applications in prediction and control. In this work, we study the existence of one-to-one linear immersions for nonlinear systems with multiple omega-limit sets. For this class of systems, existing work shows that a discontinuous one-to-one linear immersion may exist, but it is unclear if a continuous one-to-one linear immersion exists. Under mild conditions, we prove that systems with multiple omega-limit sets cannot admit a continuous one-to-one immersion to a class of systems including linear systems. Multiple examples are studied to verify our results. Copyright (c) 2023 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)