On the Non-Existence of Immersions for Systems with Multiple Omega-Limit Sets

被引:4
|
作者
Liu, Zexiang [1 ]
Ozay, Necmiye [1 ]
Sontag, Eduardo D. [2 ,3 ]
机构
[1] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[2] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA
[3] Northeastern Univ, Dept Bioengn, Boston, MA 02115 USA
来源
IFAC PAPERSONLINE | 2023年 / 56卷 / 02期
关键词
Nonlinear Systems; Immersion; Koopman Operator; Equivalent Systems; KOOPMAN OPERATOR;
D O I
10.1016/j.ifacol.2023.10.1408
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Linear immersions (or Koopman eigenmappings) of a nonlinear system have wide applications in prediction and control. In this work, we study the existence of one-to-one linear immersions for nonlinear systems with multiple omega-limit sets. For this class of systems, existing work shows that a discontinuous one-to-one linear immersion may exist, but it is unclear if a continuous one-to-one linear immersion exists. Under mild conditions, we prove that systems with multiple omega-limit sets cannot admit a continuous one-to-one immersion to a class of systems including linear systems. Multiple examples are studied to verify our results. Copyright (c) 2023 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
引用
收藏
页码:60 / 64
页数:5
相关论文
共 50 条
  • [1] Computing omega-limit sets in linear dynamical systems
    Hainry, Emmanuel
    UNCONVENTIONAL COMPUTATION, PROCEEDINGS, 2008, 5204 : 83 - 95
  • [2] OMEGA-LIMIT SETS FOR SPIRAL MAPS
    Kitchens, Bruce
    Misiurewicz, Michal
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 27 (02) : 787 - 798
  • [3] OMEGA-LIMIT SETS FOR MAPS OF THE INTERVAL
    BLOCK, L
    COVEN, EM
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1986, 6 : 335 - 344
  • [4] A reduction principle for omega-limit sets
    Schropp, J
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 (06): : 349 - 356
  • [5] ON omega-LIMIT SETS OF TRIANGULAR INDUCED MAPS
    Kolyada, Sergii
    Robatian, Damoon
    REAL ANALYSIS EXCHANGE, 2012, 38 (02) : 299 - 316
  • [6] OMEGA-LIMIT SETS OF SMOOTH CYLINDRICAL CASCADES
    KRYGIN, AB
    MATHEMATICAL NOTES, 1978, 23 (5-6) : 479 - 485
  • [7] Omega-limit sets and robust stability for switched systems with distinct equilibria
    Baradaran, Matina
    Teel, Andrew R.
    IFAC PAPERSONLINE, 2020, 53 (02): : 2039 - 2044
  • [8] On symmetric omega-limit sets in reversible flows
    Lamb, JSW
    Nicol, M
    NONLINEAR DYNAMICAL SYSTEMS AND CHAOS, 1996, 19 : 103 - 120
  • [9] DISCRETE LJAPUNOV FUNCTIONALS AND OMEGA-LIMIT SETS
    FIEDLER, B
    RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1989, 23 (03): : 415 - 431
  • [10] THE STRUCTURE OF OMEGA-LIMIT SETS OF NONEXPANSIVE MAPS
    ROEHRIG, SF
    SINE, RC
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 81 (03) : 398 - 400