Nitrogen self-doped carbon aerogels from chitin for supercapacitors

被引:34
作者
Zhai Z. [1 ,2 ]
Ren B. [1 ,2 ]
Xu Y. [1 ,2 ]
Wang S. [1 ,2 ]
Zhang L. [1 ,2 ]
Liu Z. [1 ,2 ]
机构
[1] Institute of Energy Resources, Hebei Academy of Sciences, Shijiazhuang, 050081, Hebei Province
[2] Hebei Engineering Research Center for Water Saving in Industry, Shijiazhuang, 050081, Hebei Province
来源
Liu, Zhenfa (lzf63@sohu.com) | 1600年 / Elsevier B.V.卷 / 481期
关键词
Carbon aerogels; Chitin; Microwave hydrothermal; Supercapacitors; Zinc chloride;
D O I
10.1016/j.jpowsour.2020.228976
中图分类号
学科分类号
摘要
Carbon aerogels with low cost and eco-friendly are considered as ideal electrode materials for supercapacitors. In this investigation, nitrogen self-doped carbon aerogels (NSCA) are prepared by microwave hydrothermal and high-temperature carbonization using chitin as carbon and nitrogen sources. Zinc chloride is used as a dehydration agent and an activator. Owing to the low boiling point of Zinc chloride, it does not require any additional steps to remove the activator. Also, due to the activation of Zinc chloride, the specific surface area of NSCA reaches 2540 m2 g−1. In the three-electrode system, NSCA-1000 exhibits specific capacitance of 249.4 and 164.9 F g−1 at current densities of 1.0 and 10 A g−1, respectively. In the two-electrode system, the NSCA-1000 based symmetrical supercapacitor demonstrates an energy density and power density of 26.15 Wh kg−1 and 0.95 kW kg−1 at 1.0 A g−1, respectively. Meanwhile, NSCA-1000 displays excellent cycling stability that the specific capacitance can maintain 98.44% after 15,000 cycles at a current density of 2.0 A g−1. © 2020 Elsevier B.V.
引用
收藏
相关论文
共 38 条
  • [11] Hu Y., Tong X., Zhong L., Et al., RSC Adv., 6, pp. 15788-15795, (2016)
  • [12] Guo B., Liu Q., Gong J., Et al., Nano Lett., 10, pp. 4975-4980, (2010)
  • [13] Wang X., Li X., Dai H., Et al., Science, 324, pp. 768-771, (2009)
  • [14] Tian W., Zhang H., Wang S., Et al., Carbon, 118, pp. 98-105, (2017)
  • [15] Sun F., Gao J., Pi X., Et al., J. Power Sources, 337, pp. 189-196, (2017)
  • [16] Hao P., Zhao Z., Wong C.P., Et al., Nanomater. Energy, 15, pp. 9-23, (2015)
  • [17] Balazs N., Silvia V.R., Krisztina L., Et al., Microporous Mesoporous Mater., 230, pp. 135-144, (2016)
  • [18] Chen Z., Zhong L., Sun R., Et al., Carbohydr. Polym., 170, pp. 107-116, (2017)
  • [19] Xu B., Hou S., Wu F., Et al., J. Mater. Chem., 22, pp. 19088-19093, (2012)
  • [20] Wang B., Li D., Xia Y., Et al., J. Alloys Compd., 749, pp. 517-522, (2018)