Linearized Decoupled Mass and Energy Conservation CN Galerkin FEM for the Coupled Nonlinear Schrödinger System

被引:1
作者
Shi, Dongyang [1 ]
Qi, Zhenqi [2 ]
机构
[1] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Peoples R China
[2] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
Coupled nonlinear schr & ouml; dinger system; Mass and energy conservation; Interpolation and Ritz projection combination technique; Unconditional superclose and superconvergent analyses; FINITE-ELEMENT-METHOD; SUPERCONVERGENCE ANALYSIS; ERROR ANALYSIS; SCHRODINGER; STABILITY; SCHEME; WAVES; MULTIPULSES; EQUATIONS;
D O I
10.1007/s10915-024-02632-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a linearized decoupled mass and energy conservation Crank-Nicolson (CN) fully-discrete scheme is proposed for the coupled nonlinear Schr & ouml;dinger (CNLS) system with the conforming bilinear Galerkin finite element method (FEM), and the unconditional supercloseness and superconvergence error estimates in H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>1$$\end{document}-norm are deduced rigorously. Firstly, with the aid of the popular time-space splitting technique, that is, by introducing a suitable time discrete system, the error is divided into two parts, the time error and spatial error, the boundedness of numerical solution in L infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>\infty $$\end{document}-norm is derived strictly without any constraint between the mesh size h and the time step tau\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}. Then, thanks to the high accuracy result between the interpolation and Ritz projection, the unconditional superclose error estimate is obtained, and the corresponding unconditional superconvergence result is acquired through the interpolation post-processing technique. At last, some numerical results are supplied to verify the theoretical analysis.
引用
收藏
页数:35
相关论文
共 43 条
[1]   ON FULLY DISCRETE GALERKIN METHODS OF 2ND-ORDER TEMPORAL ACCURACY FOR THE NONLINEAR SCHRODINGER-EQUATION [J].
AKRIVIS, GD ;
DOUGALIS, VA ;
KARAKASHIAN, OA .
NUMERISCHE MATHEMATIK, 1991, 59 (01) :31-53
[2]   Bose-Einstein condensates in standing waves: The cubic nonlinear Schrodinger equation with a periodic potential [J].
Bronski, JC ;
Carr, LD ;
Deconinck, B ;
Kutz, JN .
PHYSICAL REVIEW LETTERS, 2001, 86 (08) :1402-1405
[3]   A unified framework of high order structure-preserving B-splines Galerkin methods for coupled nonlinear Schrodinger systems [J].
Castillo, Paul ;
Gomez, Sergio .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 102 :45-53
[4]   Conservative local discontinuous Galerkin methods for a generalized system of strongly coupled nonlinear Schrodinger equations [J].
Castillo, Paul ;
Gomez, Sergio .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 99
[5]   Self-similarity and asymptotic stability for coupled nonlinear Schrodinger equations in high dimensions [J].
Ferreira, Lucas C. F. ;
Villamizar-Roa, Elder J. .
PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (05) :534-542
[6]   A new high-order accurate conservative finite difference scheme for the coupled nonlinear Schrodinger equations [J].
He, Yuyu ;
Wang, Xiaofeng ;
Dai, Weizhong ;
Deng, Yaqing .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021,
[7]  
Hu J, 2005, J COMPUT MATH, V23, P561
[8]   A linearly implicit conservative scheme for the coupled nonlinear Schrodinger equation [J].
Ismail, M. S. ;
Taha, Thiab R. .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2007, 74 (4-5) :302-311
[9]   Numerical simulation of coupled nonlinear Schrodinger equation [J].
Ismail, MS ;
Taha, TR .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2001, 56 (06) :547-562
[10]   Pointwise second order convergence of structure-preserving scheme for the triple-coupled nonlinear Schrödinger equations [J].
Kong, Linghua ;
Wu, Yexiang ;
Liu, Zhiqiang ;
Wang, Ping .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 154 :91-102