Boosting the electroreduction of CO2 to liquid products via nanostructure engineering of Cu2O catalysts

被引:8
作者
Yang, Fangqi [1 ,2 ]
Yang, Tonglin [1 ,3 ]
Li, Jing [4 ]
Li, Pengfei [5 ,6 ]
Zhang, Quan [7 ]
Lin, Huihui [6 ]
Wu, Luyan [1 ,2 ]
机构
[1] Nanjing Univ Posts & Telecommun, Inst Adv Mat IAM, State Key Lab Organ Elect & Informat Displays, Nanjing 210023, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Sch Mat Sci & Engn, Nanjing 210023, Peoples R China
[3] Nanjing Univ Posts & Telecommun, Sch Chem & Life Sci, Nanjing 210023, Peoples R China
[4] Beihang Univ, Sch Chem, Key Lab Bioinspired Smart Interfacial Sci & Techno, Minist Educ, Beijing 100191, Peoples R China
[5] Tianjin Univ, Joint Sch Natl Univ Singapore & Tianjin Univ, Int Campus, Fuzhou 350207, Peoples R China
[6] Natl Univ Singapore, Dept Chem, 3 Sci Dr 3, Singapore 117543, Singapore
[7] Hubei Normal Univ, Coll Chem & Chem Engn, Hubei Key Lab Pollutant Anal & Reuse Technol, Huangshi 435002, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2; reduction; Cuprous oxide; Electrocatalysis; Formate; Ethanol; SELECTIVE ELECTROCHEMICAL REDUCTION; COPPER; ELECTRODES;
D O I
10.1016/j.jcat.2024.115458
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The electrochemical reduction of CO 2 presents a promising pathway for storing intermittent renewable energy in the form of chemical bonds, thereby mitigating CO 2 emissions and enabling the production of sustainable fuels. In this work, we demonstrate nanoscale engineering of oxygen vacancy and morphology simultaneously on Cu 2 O catalysts for electrochemical reduction of CO 2 to liquid products (formate and ethanol). By comparing the performance of cube- and tetrakaidecahedron-like Cu 2 O catalysts, we have demonstrated that the flower-like Cu 2 O catalyst, enclosed with rich oxygen vacancy defects, exhibited superior performance in the reduction of CO 2 to liquid products. Moreover, the synergetic role of Cu + also contributed to the enhanced activity by promoting CO 2 adsorption and facilitating C -C coupling. As a result, the peak Faradaic efficiency (FE) for liquid products of 95.5 % was obtained, associated with a high ethanol FE of 52.6 % and formation rate of 23.8 mu mol h -1 cm -2 within a H-cell. Furthermore, within a flow cell configuration, we have observed a significant improvement in the generation of formate, maintaining FE values above 70 % even under high current densities of up to 400 mA cm -2 . In -situ Raman spectroscopic measurements allow us to identify and track key intermediates involved in the CO 2 reduction to formate and ethanol. This detailed understanding of the reaction pathways adds to our fundamental knowledge and provides valuable insights for the development of morphology-controlled electrocatalysts targeting efficient conversion of CO 2 into liquid products.
引用
收藏
页数:8
相关论文
共 52 条
[1]   Hybrid Cu0 and Cux+ as Atomic Interfaces Promote High-Selectivity Conversion of CO2 to C2H5OH at Low Potential [J].
Bai, Xiaowan ;
Li, Qiang ;
Shi, Li ;
Niu, Xianghong ;
Ling, Chongyi ;
Wang, Jinlan .
SMALL, 2020, 16 (12)
[2]   Highly Selective Electrochemical Reduction of CO2 into Methane on Nanotwinned Cu [J].
Cai, Jin ;
Zhao, Qing ;
Hsu, Wei-You ;
Choi, Chungseok ;
Liu, Yang ;
Martirez, John Mark P. ;
Chen, Chih ;
Huang, Jin ;
Carter, Emily A. ;
Huang, Yu .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (16) :9136-9143
[3]   Highly Efficient Electroreduction of CO2to C2+Alcohols on Heterogeneous Dual Active Sites [J].
Chen, Chunjun ;
Yan, Xupeng ;
Liu, Shoujie ;
Wu, Yahui ;
Wan, Qiang ;
Sun, Xiaofu ;
Zhu, Qinggong ;
Liu, Huizhen ;
Ma, Jun ;
Zheng, Lirong ;
Wu, Haihong ;
Han, Buxing .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (38) :16459-16464
[4]   Dual-site catalysts featuring platinum-group-metal atoms on copper shapes boost hydrocarbon formations in electrocatalytic CO2 reduction [J].
Chhetri, Manjeet ;
Wan, Mingyu ;
Jin, Zehua ;
Yeager, John ;
Sandor, Case ;
Rapp, Conner ;
Wang, Hui ;
Lee, Sungsik ;
Bodenschatz, Cameron J. J. ;
Zachman, Michael J. J. ;
Che, Fanglin ;
Yang, Ming .
NATURE COMMUNICATIONS, 2023, 14 (01)
[5]   Efficient and stable acidic CO2 electrolysis to formic acid by a reservoir structure design [J].
Chi, Li-Ping ;
Niu, Zhuang-Zhuang ;
Zhang, Yu-Cai ;
Zhang, Xiao-Long ;
Liao, Jie ;
Wu, Zhi-Zheng ;
Yu, Peng-Cheng ;
Fan, Ming-Hui ;
Tang, Kai-Bin ;
Gao, Min-Rui .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 120 (51)
[6]   Hierarchical Cu pillar electrodes for electrochemical CO2 reduction to formic acid with low overpotential [J].
Chung, Jaehoon ;
Won, Da Hye ;
Koh, Jaekang ;
Kim, Eun-Hee ;
Woo, Seong Ihl .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (08) :6252-6258
[7]   CO2 electrolysis to multicarbon products at activities greater than 1 A cm-2 [J].
de Arquer, F. Pelayo Garcia ;
Cao-Thang Dinh ;
Ozden, Adnan ;
Wicks, Joshua ;
McCallum, Christopher ;
Kirmani, Ahmad R. ;
Dae-Hyun Nam ;
Gabardo, Christine ;
Seifitokaldani, Ali ;
Wang, Xue ;
Li, Yuguang C. ;
Li, Fengwang ;
Edwards, Jonathan ;
Richter, Lee J. ;
Thorpe, Steven J. ;
Sinton, David ;
Sargent, Edward H. .
SCIENCE, 2020, 367 (6478) :661-+
[8]   Over 70 % Faradaic Efficiency for CO2 Electroreduction to Ethanol Enabled by Potassium Dopant-Tuned Interaction between Copper Sites and Intermediates [J].
Ding, Lianchun ;
Zhu, Nannan ;
Hu, Yan ;
Chen, Zheng ;
Song, Pin ;
Sheng, Tian ;
Wu, Zhengcui ;
Xiong, Yujie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (36)
[9]   CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface [J].
Dinh, Cao-Thang ;
Burdyny, Thomas ;
Kibria, Md Golam ;
Seifitokaldani, Ali ;
Gabardo, Christine M. ;
de Arquer, F. Pelayo Garcia ;
Kiani, Amirreza ;
Edwards, Jonathan P. ;
De Luna, Phil ;
Bushuyev, Oleksandr S. ;
Zou, Chengqin ;
Quintero-Bermudez, Rafael ;
Pang, Yuanjie ;
Sinton, David ;
Sargent, Edward H. .
SCIENCE, 2018, 360 (6390) :783-787
[10]   Boosting Production of HCOOH from CO2 Electroreduction via Bi/CeOx [J].
Duan, Yan-Xin ;
Zhou, Yi-Tong ;
Yu, Zhen ;
Liu, Dong-Xue ;
Wen, Zi ;
Yan, Jun-Min ;
Jiang, Qing .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (16) :8798-8802