On Asymptotics of Eigenvalues of Seven-Diagonal Toeplitz Matrices

被引:0
作者
Voronin, I. V. [1 ]
机构
[1] Natl Res Univ, Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Oblast, Russia
基金
俄罗斯科学基金会;
关键词
Toeplitz matrices; eigenvectors; asymptotic expansions;
D O I
10.1134/S0965542524700404
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Asymptotic formulas are derived that admit a uniform estimate of the remainder for Toeplitz matrices of size n as n -> infinity in the case when their symbol a(t) has the form a(t) = (t - 2a(0) + t(-1/3)). This result is a generalization of the result of Stukopin et al. (2021), who obtained similar asymptotic formulas for a seven-diagonal Toeplitz matrix with a similar symbol in the case a(0) = 1. The resulting formulas are of high computational efficiency and generalize the classical results of Parter and Widom on asymptotics of extreme eigenvalues.
引用
收藏
页码:1159 / 1166
页数:8
相关论文
共 13 条
  • [1] [Anonymous], 1990, Topics in Operator Theory: Ernst D. Hellinger Memorial Volume, Oper. Theory Adv. Appl., V48, P387
  • [2] Asymptotics of eigenvalues of symmetric Toeplitz band matrices
    Batalshchikov, A. A.
    Grudsky, S. M.
    Stukopin, V. A.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 469 : 464 - 486
  • [3] Bttcher A., 2005, Spectral Properties of Banded Toeplitz Matrices, DOI [10.1137/1.9780898717853, DOI 10.1137/1.9780898717853]
  • [4] Bttcher A., 1999, Introduction to Large Truncated Toeplitz Matrices, DOI [10.1007/978-1-4612-1426-7, DOI 10.1007/978-1-4612-1426-7]
  • [5] Deift P, 2012, BULL INST MATH ACAD, V7, P437
  • [6] Toeplitz Matrices and Toeplitz Determinants under the Impetus of the Ising Model: Some History and Some Recent Results
    Deift, Percy
    Its, Alexander
    Krasovsky, Igor
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2013, 66 (09) : 1360 - 1438
  • [7] On a relationship between Chebyshev polynomials and Toeplitz determinants
    Elouafi, Mohamed
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 229 : 27 - 33
  • [8] Grenander U., 1958, Journal of the American Statistical Association, V53, P763, DOI DOI 10.2307/2282065
  • [9] SPIN-SPIN CORRELATIONS IN 2-DIMENSIONAL ISING MODEL
    KADANOFF, LP
    [J]. NUOVO CIMENTO B, 1966, 44 (02): : 276 - &
  • [10] McCoy B.M., 2013, The Two-Dimensional Ising Model, DOI DOI 10.4159/HARVARD.9780674180758