Deciphering cell-cell communication at single-cell resolution for spatial transcriptomics with subgraph-based graph attention network

被引:10
作者
Yang, Wenyi [1 ]
Wang, Pingping [2 ]
Xu, Shouping [3 ]
Wang, Tao [4 ]
Luo, Meng [1 ]
Cai, Yideng [1 ]
Xu, Chang [1 ]
Xue, Guangfu [1 ]
Que, Jinhao [1 ]
Ding, Qian [1 ]
Jin, Xiyun [2 ]
Yang, Yuexin [1 ]
Pang, Fenglan [1 ]
Pang, Boran [5 ]
Lin, Yi [2 ]
Nie, Huan [1 ]
Xu, Zhaochun [2 ]
Ji, Yong [6 ]
Jiang, Qinghua [1 ,2 ]
机构
[1] Harbin Inst Technol, Ctr Bioinformat, Sch Life Sci & Technol, Harbin, Peoples R China
[2] Harbin Med Univ, Sch Interdisciplinary Med & Engn, Harbin, Peoples R China
[3] Harbin Med Univ, Canc Hosp, Dept Breast Surg, Harbin, Peoples R China
[4] Northwestern Polytech Univ, Sch Comp Sci, Xian, Peoples R China
[5] Tongji Univ, Sch Med, Shanghai Peoples Hosp 10, Ctr Difficult & Complicated Abdominal Surg, Shanghai, Peoples R China
[6] Harbin Med Univ, State Key Lab Frigid Zone Cardiovasc Dis SKLFZCD, Harbin, Peoples R China
基金
中国国家自然科学基金;
关键词
GENOME-WIDE EXPRESSION; RNA-SEQ; RECEPTOR; GENE;
D O I
10.1038/s41467-024-51329-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The inference of cell-cell communication (CCC) is crucial for a better understanding of complex cellular dynamics and regulatory mechanisms in biological systems. However, accurately inferring spatial CCCs at single-cell resolution remains a significant challenge. To address this issue, we present a versatile method, called DeepTalk, to infer spatial CCC at single-cell resolution by integrating single-cell RNA sequencing (scRNA-seq) data and spatial transcriptomics (ST) data. DeepTalk utilizes graph attention network (GAT) to integrate scRNA-seq and ST data, which enables accurate cell-type identification for single-cell ST data and deconvolution for spot-based ST data. Then, DeepTalk can capture the connections among cells at multiple levels using subgraph-based GAT, and further achieve spatially resolved CCC inference at single-cell resolution. DeepTalk achieves excellent performance in discovering meaningful spatial CCCs on multiple cross-platform datasets, which demonstrates its superior ability to dissect cellular behavior within intricate biological processes. cell-cell communication (CCC) is crucial for understanding biological processes. Here, authors present DeepTalk, which combines single-cell RNA sequencing and spatial transcriptomics data to infer cell-cell communication at single-cell resolution, revealing intricate intercellular dynamics within tissues.
引用
收藏
页数:18
相关论文
共 81 条
  • [1] SpaGE: Spatial Gene Enhancement using scRNA-seq
    Abdelaal, Tamim
    Mourragui, Soufiane
    Mahfouz, Ahmed
    Reinders, Marcel J. T.
    [J]. NUCLEIC ACIDS RESEARCH, 2020, 48 (18) : E107 - E107
  • [2] The landscape of cell-cell communication through single-cell transcriptomics
    Almet, Axel A.
    Cang, Zixuan
    Jin, Suoqin
    Nie, Qing
    [J]. CURRENT OPINION IN SYSTEMS BIOLOGY, 2021, 26 : 12 - 23
  • [3] Alsentzer, 2020, Neural Netw, V33, P8017
  • [4] Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography
    Andersson, Alma
    Bergenstrahle, Joseph
    Asp, Michaela
    Bergenstrahle, Ludvig
    Jurek, Aleksandra
    Fernandez Navarro, Jose
    Lundeberg, Joakim
    [J]. COMMUNICATIONS BIOLOGY, 2020, 3 (01)
  • [5] Inferring a spatial code of cell-cell interactions across a whole animal body
    Armingol, Erick
    Ghaddar, Abbas
    Joshi, Chintan J.
    Baghdassarian, Hratch
    Shamie, Isaac
    Chan, Jason
    Her, Hsuan-Lin
    Berhanu, Samuel
    Dar, Anushka
    Rodriguez-Armstrong, Fabiola
    Yang, Olivia
    O'Rourke, Eyleen J.
    Lewis, Nathan E.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (11)
  • [6] Deciphering cell-cell interactions and communication from gene expression
    Armingol, Erick
    Officer, Adam
    Harismendy, Olivier
    Lewis, Nathan E.
    [J]. NATURE REVIEWS GENETICS, 2021, 22 (02) : 71 - 88
  • [7] Modeling Cell-Cell Interactions from Spatial Molecular Data with Spatial Variance Component Analysis
    Arnol, Damien
    Schapiro, Denis
    Bodenmiller, Bernd
    Saez-Rodriguez, Julio
    Stegle, Oliver
    [J]. CELL REPORTS, 2019, 29 (01): : 202 - +
  • [8] Benesty J, 2009, SPRINGER TOP SIGN PR, V2, P1, DOI 10.1007/978-3-642-00296-0
  • [9] Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram
    Biancalani, Tommaso
    Scalia, Gabriele
    Buffoni, Lorenzo
    Avasthi, Raghav
    Lu, Ziqing
    Sanger, Aman
    Tokcan, Neriman
    Vanderburg, Charles R.
    Segerstolpe, Asa
    Zhang, Meng
    Avraham-Davidi, Inbal
    Vickovic, Sanja
    Nitzan, Mor
    Ma, Sai
    Subramanian, Ayshwarya
    Lipinski, Michal
    Buenrostro, Jason
    Brown, Nik Bear
    Fanelli, Duccio
    Zhuang, Xiaowei
    Macosko, Evan Z.
    Regev, Aviv
    [J]. NATURE METHODS, 2021, 18 (11) : 1352 - +
  • [10] Cell-to-cell communication in plants, animals, and fungi: a comparative review
    Bloemendal, Sandra
    Kueck, Ulrich
    [J]. NATURWISSENSCHAFTEN, 2013, 100 (01) : 3 - 19