Quantifying the performance enhancement facilitated by fractional-order implementation of classical control strategies for nanopositioning

被引:4
作者
Wang, Tiecheng [1 ,2 ]
San-Millan, Andres [3 ]
Aphale, Sumeet S. [3 ]
机构
[1] Tianjin Univ Technol & Educ, Tianjin 300222, Peoples R China
[2] Tangshan Polytech Coll, Tangshan 063299, Peoples R China
[3] Univ Aberdeen, Sch Engn, Artificial Intelligence Robot & Mechatron Syst Grp, Aberdeen AB24 3UE, Scotland
关键词
Fractional order control; Nanopositioning; Piezoelectric actuators; Robust control; INTEGRAL RESONANT CONTROL; COMPENSATION;
D O I
10.1016/j.isatra.2024.01.033
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For most nanopositioning systems, maximizing positioning bandwidth to accurately track periodic and aperiodic reference signals is the primary performance goal. Closed -loop control schemes are employed to overcome the inherent performance limitations such as mechanical resonance, hysteresis and creep. Most reported control schemes are integer -order and combine both damping and tracking actions. In this work, fractional -order controllers from the positive position feedback family namely: the Fractional -Order Integral Resonant Control (FOIRC), the Fractional -Order Positive Position Feedback (FOPPF) controller, the Fractional -Order Positive Velocity and Position Feedback (FOPVPF) controller and the Fractional -Order Positive, Acceleration, Velocity and Position Feedback (FOPAVPF) controller are designed and analysed. Compared with their classical integerorder implementation, the fractional -order damping and tracking controllers furnish additional design (tuning) parameters, facilitating superior closed -loop bandwidth and tracking accuracy. Detailed simulated experiments are performed on recorded frequency -response data to validate the efficacy, stability and robustness of the proposed control schemes. The results show that the fractional -order versions deliver the best overall performance.
引用
收藏
页码:153 / 162
页数:10
相关论文
共 41 条
[1]   Integral resonant control of collocated smart structures [J].
Aphale, Sumeet S. ;
Fleming, Andrew J. ;
Moheimani, S. O. Reza .
SMART MATERIALS AND STRUCTURES, 2007, 16 (02) :439-446
[2]   Control of negative imaginary systems exploiting a dissipative characterization [J].
Behera, Pravin ;
Dey, Arnab ;
Patra, Sourav .
AUTOMATICA, 2022, 146
[3]   PVPF control of piezoelectric tube scanners [J].
Bhikkaji, B. ;
Ratnam, M. ;
Moheimani, S. O. R. .
SENSORS AND ACTUATORS A-PHYSICAL, 2007, 135 (02) :700-712
[4]   Analog fractional order controller in temperature and motor control applications [J].
Bohannan, Gary W. .
JOURNAL OF VIBRATION AND CONTROL, 2008, 14 (9-10) :1487-1498
[5]   A survey of control issues in nanopositioning [J].
Devasia, Santosh ;
Eleftheriou, Evangelos ;
Moheimani, S. O. Reza .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2007, 15 (05) :802-823
[6]   On the Robust Control of Systems Preceded by Coleman-Hodgdon Hysteresis [J].
Du, Juan ;
Feng, Ying ;
Su, Chun-Yi ;
Hu, Yue-Ming .
2009 IEEE INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION, VOLS 1-3, 2009, :685-+
[7]   POSITIVE POSITION FEEDBACK-CONTROL FOR LARGE SPACE STRUCTURES [J].
FANSON, JL ;
CAUGHEY, TK .
AIAA JOURNAL, 1990, 28 (04) :717-724
[8]   Fractional-order integral resonant control of collocated smart structures [J].
Feliu-Talegon, D. ;
San-Millan, A. ;
Feliu-Batlle, V. .
CONTROL ENGINEERING PRACTICE, 2016, 56 :210-223
[9]   Passivity-based control of a single-link flexible manipulator using fractional controllers [J].
Feliu-Talegon, Daniel ;
Feliu-Batlle, Vicente .
NONLINEAR DYNAMICS, 2019, 95 (03) :2415-2441
[10]   High precision robust control design of piezoelectric nanopositioning platform [J].
Feng, Huan ;
Pang, Aiping ;
Zhou, Hongbo .
SCIENTIFIC REPORTS, 2022, 12 (01)