Long-range models in 1D revisited

被引:1
|
作者
Duminil-Copin, Hugo [1 ,2 ]
Garban, Christophe [3 ,4 ]
Tassion, Vincent [5 ]
机构
[1] Univ Geneva, 2-4 Rue Lievre, CH-1204 Geneva, Switzerland
[2] Inst Hautes Etud Sci, 35 Route Chartres, F-91440 Bures Sur Yvette, France
[3] Univ Claude Bernard Lyon 1, Inst Camille Jordan, CNRS UMR 5208, F-69622 Villeurbanne, France
[4] Inst Univ France IUF, Paris, France
[5] Swiss Fed Inst Technol, Dept Math, Grp 3 HG G 66-5 Ramistr 101, CH-8092 Zurich, Switzerland
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2024年 / 60卷 / 01期
基金
欧洲研究理事会;
关键词
Percolation; Long-range; Renormalization; Critical; One-dimension; PERCOLATION; DISCONTINUITY; MAGNETIZATION; TRANSITION; PHASE;
D O I
10.1214/22-AIHP1355
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this short note, we revisit a number of classical results on long-range 1D percolation, Ising model and Potts models (Comm. Math. Phys. 84 (1982) 87-101; Comm. Math. Phys. 104 (1986) 547-571; J. Stat. Phys. 50 (1988) 1-40; Comm. Math. Phys. 118 (1988) 303-336). More precisely, we show that for Bernoulli percolation, FK percolation and Potts models, there is symmetry breaking for the 1/r2-interaction at large 0, and that the phase transition is necessarily discontinuous. We also show, following the notation of (J. Stat. Phys. 50 (1988) 1-40) that 0*(q) = 1 for all q >= 1.
引用
收藏
页码:232 / 241
页数:10
相关论文
共 50 条
  • [31] SWIR range performance prediction for long-range applications
    Guadagnoli, E.
    Ventura, P.
    Barani, G.
    Porta, A.
    INFRARED IMAGING SYSTEMS: DESIGN, ANALYSIS, MODELING, AND TESTING XXV, 2014, 9071
  • [32] Collective modes in the charge density wave state of K0.3MoO3: Role of long-range Coulomb interactions revisited
    Hansen, Max O.
    Palan, Yash
    Hahn, Viktor
    Thomson, Mark D.
    Warawa, Konstantin
    Roskos, Hartmut G.
    Demsar, Jure
    Pientka, Falko
    Tsyplyatyev, Oleksandr
    Kopietz, Peter
    PHYSICAL REVIEW B, 2023, 108 (04)
  • [33] Anderson localization in 1D systems with correlated disorder
    Croy, A.
    Cain, P.
    Schreiber, M.
    EUROPEAN PHYSICAL JOURNAL B, 2011, 82 (02) : 107 - 112
  • [34] CONTRASTS UNDER LONG-RANGE CORRELATIONS
    KUNSCH, H
    BERAN, J
    HAMPEL, F
    ANNALS OF STATISTICS, 1993, 21 (02) : 943 - 964
  • [35] Long-Range Interactions and Network Synchronization
    Estrada, Ernesto
    Gambuzza, Lucia Valentina
    Frasca, Mattia
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2018, 17 (01): : 672 - 693
  • [36] A Testbed for Long-Range LoRa Communication
    Trub, Roman
    Da Forno, Reto
    Gsell, Tonio
    Beutel, Jan
    Thiele, Lothar
    IPSN '19: PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON INFORMATION PROCESSING IN SENSOR NETWORKS, 2019, : 342 - 343
  • [37] Long-range electron transport in Prussian blue analog nanocrystals
    Bonnet, Romeo
    Lenfant, Stephane
    Mazerat, Sandra
    Mallah, Talal
    Vuillaume, Dominique
    NANOSCALE, 2020, 12 (39) : 20374 - 20385
  • [38] REGIOSELECTIVITY STUDIES BY SELECTIVE DETECTION OF LONG-RANGE HETERONUCLEAR COUPLINGS FROM THE SDEPT-1D METHOD
    PARELLA, T
    SANCHEZFERRANDO, F
    VIRGILI, A
    MAGNETIC RESONANCE IN CHEMISTRY, 1994, 32 (06) : 343 - 347
  • [39] Long-range quenched bond disorder in the bidimensional Potts model
    Chippari, Francesco
    Picco, Marco
    Santachiara, Raoul
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2023, 2023 (04):
  • [40] A note on two-dimensional truncated long-range percolation
    Menshikov, M
    Sidoravicius, V
    Vachkovskaia, M
    ADVANCES IN APPLIED PROBABILITY, 2001, 33 (04) : 912 - 929